using xxM
- Branum-Martin, L. (2013). Multilevel modeling: Practical examples to illustrate a special case of SEM (pp. 95-124). In Y. Petscher, C. Schatschneider, & D.L. Compton (Eds.) Applied quantitative analysis in education and social sciences. New York: Routledge.
- Mehta, P. (2013). N-level structural equation modeling (pp. 329-362). In Y. Petscher, C. Schatschneider, & D.L. Compton (Eds.) Applied quantitative analysis in education and social sciences. New York: Routledge.
key multilevel structural equation modeling references
- Mehta, P. D., & Neale, M. C. (2005). People Are Variables Too: Multilevel Structural Equations Modeling. Psychological Methods. 5, 259-284.
- Mehta, P. D., & West, S. G. (2000). Putting the individual back into individual growth curves. Psychological Methods. 5, 23-43.
- Muthén, B. & Asparouhov, T. (2011). Beyond multilevel regression modeling: Multilevel analysis in a general latent variable framework. In J. Hox & J.K. Roberts (eds), Handbook of Advanced Multilevel Analysis, pp. 15-40. New York: Taylor and Francis.
- Rabe-Hesketh, S. and Skrondal, A. (2007). Multilevel and latent variable modeling with composite links and exploded likelihoods. Psychometrika, 72, 123-140.
- Lockwood, J., McCaffrey, D., Mariano, L., & Setodji, C. (2007). Bayesian methods for scalable multivariate value-added assessment. Journal of Educational and Behavioral Statistics, 32, 125–150.
- Bates, D., Maechler, M., Bolker, B., & Walker, S. (2013). Lme4: Linear mixed-effects model using Eigen and S4. R package version 1.0-5. http://CRAN.R-project.org/package=lme4.
- Bates, D. (2010). Lme4: Mixed-effects modeling with R [On-line document]. URL http://lme4.r-forge.r-project.org/lMMwR/lrgprt.pdf.
- Preacher, K. J., Zhang, Z., & Zyphur, M. J. (2011). Alternative methods for assessing mediation in multilevel data: The advantages of multilevel SEM. Structural Equation Modeling, 18, 161-182.
- Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2010). A general multilevel SEM framework for assessing multilevel mediation. Psychological Methods, 15, 209-233.
- Curran, P. J. (2003). Have multilevel models been structural equation models all along? Multivariate Behavioral Research, 38, 529 –569.
- Bauer, D. J. (2003). Estimating multilevel linear models as structural models. Journal of Educational and Behavioral Statistics, 28, 135–167.
- du Toit, S., & du Toit, M. (2003). Multilevel structural equation modeling. In J. De Leeuw & I. G. G. Kreft (Eds.), Handbook of quantitative multilevel analysis (pp. 273–321). Boston:
Kluwer. - Bentler, P. M., & Liang, J. (2003). Two-level mean and covariance structures: Maximum likelihood via and EM algorithm. In S. P. Reise & N. Duan (Eds.), Multilevel modeling: Methodological advances, issues, and applications (pp. 53–70). Hillsdale, NJ: Erlbaum.
- Goldstein, H., & Browne, W. J. (2002). Multilevel factor analysis modelling using Markov Chain Monte Carlo (MCMC) estima- tion. In G. Marcoulides & I. Moustaki (Eds.), Latent variable and latent structure models (pp. 225–243). Hillsdale, NJ: Erlbaum.
- McDonald, R. P. (1993). A general model for two level data with responses missing at random. Psychometrika, 58, 575–585.
- Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal and structural equation models. Boca Raton, FL: Chapman & Hill.
- Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychological Bulletin, 116, 363–381.