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1 ABOUT XXM 

xxM is an R package for Structural Equations Modeling with complex dependent data 
structures.  xxM implements a modeling framework called n-Level Structural Equation Modeling (NL-
SEM). In other words, xxM allows models with any number of levels.  Observed and latent variables are 
allowed at all levels. A conventional SEM model may be specified for each level and across-any two 
levels.  Random-effects of observed variables are allowed both within and across levels. 

1.1 WEBSITE 

• http://xxm.times.uh.edu   

1.2 MODEL SPECIFICATION 

• Uses a simple graphical representation for fairly complex NL-SEM models.  There is one-to-one 
correspondence between the graphical and mathematical representation of the model. ‘If you 
can draw the model, you can estimate the model’. 

• Uses a LEGO like ‘building-block’ approach for constructing models. Once the basic building 
blocks are understood, arbitrarily complex models are constructed by repeating the same key 
steps. 

• Uses standard SEM matrices for specifying the model. If you already know LISREL, transitioning 
to xxM would be easy. 

1.3 DEPENDENT DATA-STRUCTURES 

• Hierarchically nested data (e.g., students, classrooms, schools, districts). 
• Cross-classified data (e.g., students nested within primary and secondary schools). 
• Partial nesting (e.g., at-risk students in a classroom receive additional instruction by a tutor). 
• Longitudinal data (long or wide). 
• Longitudinal data with switching classification (e.g., students changing classrooms/teachers over 

time). 
• Round-robin design (e.g., each person rates every other person in a small group). 
• 360 performance evaluation data. 

1.4 MODEL TYPES 

• Multilevel models with random-effects of observed variables. 
• Structural Equation Models with observed and latent variables at all levels. 
• Multivariate Linear Mixed-Effects Models (LME) with constraints on both G and R side of the 

model. 
• Linear Growth Curve Models. 
• Kenny’s Social Relations Model (SRM) for reciprocal dyadic ratings. 
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1.5 ESTIMATION FEATURES 

• Maximum Likelihood (ML) estimation. 
• Missing data. 
• Profile-likelihood confidence intervals (CI). 
• Equality constraints on model parameters. 

1.6 DOCUMENTATION 

• Extensive user’s guide provided many examples with real and simulated data.  The process of 
model specification is presented using equations, diagrams and the corresponding xxM script. 

• Datasets used in the documentation are distributed as part of the package. 
• Built-in R help-file documents all commands and packaged example datasets. A vignette 

illustrates the process of model specification. 

1.7 SUPPORT 

• http://xxm.times.uh.edu/support/ 
• Discussion forum. http://xxm.times.uh.edu/support/forums/ 

1.8 PRICE 

• Priceless! 

1.9 ACKNOWLEDGEMENT 

Development of xxM was supported by the Institute of Education Sciences, U.S. Department of 
Education, through grant R305D090024 awarded to Paras D. Mehta.  

  

1-2 
 

http://xxm.times.uh.edu/support/
http://xxm.times.uh.edu/support/forums/


CONTENTS 

1 Introduction ...................................................................................................................................... 1-7 

1.1 Motivating example .................................................................................................................. 1-7 

1.2 Bivariate random-intercepts model .......................................................................................... 1-7 

1.2.1 Equations .............................................................................................................................. 1-7 

1.2.2 Path-diagram ........................................................................................................................ 1-8 

1.3 Fitting bivariate random inteRcepts model in xxM ................................................................... 1-8 

1.3.1 The Main Model .................................................................................................................... 1-8 

1.3.2 Levels .................................................................................................................................... 1-9 

1.3.3 Submodels .......................................................................................................................... 1-10 

1.3.4 Datasets .............................................................................................................................. 1-11 

1.3.5 Model specification ............................................................................................................. 1-12 

1.3.6 Bivariate random intercepts model: xxM matrices ............................................................. 1-12 

1.3.7 Do Compute ........................................................................................................................ 1-18 

1.4 Bivariate Random Intercepts Model: Code Listing .................................................................. 1-18 

1.4.1 SAS: Proc Mixed .................................................................................................................. 1-18 

1.4.2 Mplus .................................................................................................................................. 1-19 

1.4.3 XXM ..................................................................................................................................... 1-19 

1.5 Complete xxM model .............................................................................................................. 1-20 

1.5.1 Observed dependent variables vs. exogenous independent variables ............................... 1-21 

1.5.2 What is a latent variable in xxM? ........................................................................................ 1-21 

1.5.3 Within-matrices .................................................................................................................. 1-21 

1.5.4 Across-matrices: Teacher to Student .................................................................................. 1-22 

2 Random slopes model ..................................................................................................................... 2-23 

2.1 Random slopes model ............................................................................................................ 2-23 

1-3 
 



2.1.1 Two-level equations ............................................................................................................ 2-23 

2.1.2 Path Diagram ...................................................................................................................... 2-24 

2.1.3 XXM Model Matrices .......................................................................................................... 2-24 

2.2 Code Listing ............................................................................................................................. 2-26 

2.2.1 SAS Proc mixed ................................................................................................................... 2-26 

2.2.2 MPLUS ................................................................................................................................. 2-27 

2.2.3 XXM ..................................................................................................................................... 2-27 

3 Univariate Latent Growth curve model ........................................................................................... 3-30 

Univariate LGC model – long format ................................................................................................... 3-30 

3.1.1 Two-level equations ............................................................................................................ 3-30 

3.1.2 Path Diagram ...................................................................................................................... 3-31 

3.1.3 XXM Model Matrices .......................................................................................................... 3-31 

3.2 Code Listing ............................................................................................................................. 3-32 

3.2.1 SAS Proc mixed ................................................................................................................... 3-32 

3.2.2 MPLUS ................................................................................................................................. 3-33 

3.2.3 XXM ..................................................................................................................................... 3-33 

3.3 Results .................................................................................................................................... 3-35 

4 Multivariate Latent Growth Curve Model ....................................................................................... 4-37 

4.1 Univariate LGC Model –Wide Format ..................................................................................... 4-37 

4.1.1 Equations ............................................................................................................................ 4-37 

4.1.2 Path Diagram ...................................................................................................................... 4-37 

4.1.3 xxM Model Matrices ........................................................................................................... 4-38 

4.1.4 Code Listing ......................................................................................................................... 4-40 

5 BIVARIATE CROSS-CLASSIFIED MODEL ............................................................................................ 5-45 

5.1 Motivating Example ................................................................................................................ 5-45 

1-4 
 



5.2 Bivariate Cross-Classified Random Intercepts Model ............................................................. 5-45 

5.2.1 MLM notation ..................................................................................................................... 5-45 

5.2.2 General notation ........................................................................ Error! Bookmark not defined. 

5.2.3 Path Diagram ...................................................................................................................... 5-47 

5.2.4 XXM Model Matrices .......................................................................................................... 5-47 

5.3 Code Listing ............................................................................................................................. 5-51 

5.3.1 SAS proc mixed ................................................................................................................... 5-51 

5.3.2 XXM ..................................................................................................................................... 5-51 

5.4 Results .................................................................................................................................... 5-53 

6 TWO LEVEL CONFIRMATORY FACTOR ANALYSIS ............................................................................. 6-54 

6.1 Motivating Example ................................................................................................................ 6-54 

6.2 Two-Level CFA Model ............................................................................................................. 6-54 

6.2.1 Scalar Representation ......................................................................................................... 6-54 

6.2.2 XXM Model Matrices .......................................................................................................... 6-55 

6.2.3 Model Matrices Summary ................................................................................................... 6-57 

6.2.4 Path Diagram ...................................................................................................................... 6-57 

6.3 Code Listing ............................................................................................................................. 6-58 

6.3.1 MPLUS ................................................................................................................................. 6-58 

6.3.2 XXM ..................................................................................................................................... 6-59 

6.4 Results .................................................................................................................................... 6-60 

7 Two level confirmatory factor analysis with a random slope .......................................................... 7-62 

7.1 Motivating Example ................................................................................................................ 7-62 

7.2 Conditional Two-Level CFA with a random slope ................................................................... 7-62 

7.2.1 Scalar Representation ......................................................................................................... 7-62 

7.2.2 XXM Model Matrices .......................................................................................................... 7-63 

1-5 
 



7.2.3 Model Matrices Summary ................................................................................................... 7-65 

7.2.4 Path Diagram ...................................................................................................................... 7-66 

7.3 Code Listing ............................................................................................................................. 7-66 

7.3.1 xxM ..................................................................................................................................... 7-66 

7.4 Results .................................................................................................................................... 7-69 

8 Three level hierarchical model with observed and latent variables at multiple levels .................... 8-70 

8.1 Motivating Example ................................................................................................................ 8-70 

8.2 Three Level Random Intercepts Model with Latent Regression ............................................. 8-70 

8.2.1 Scalar Representation ......................................................................................................... 8-70 

8.2.2 XXM Model Matrices .......................................................................................................... 8-72 

8.2.3 Model Matrices Summary ................................................................................................... 8-76 

8.2.4 Path Diagram ...................................................................................................................... 8-76 

8.3 Code Listing ............................................................................................................................. 8-77 

8.3.1 XXM ..................................................................................................................................... 8-77 

8.4 Results .................................................................................................................................... 8-80 

 

 

  

1-6 
 



1 INTRODUCTION 

This chapter introduces core concepts of xxM from a practical standpoint. Key elements of model 
specification in xxM are introduced in the context of fitting a bivariate random-intercepts model.  

1.1 MOTIVATING EXAMPLE  

We use the bivariate random intercepts model example from Mehta, Neale, and Flay (2005). 

1.2 BIVARIATE RANDOM-INTERCEPTS MODEL 

1.2.1 EQUATIONS 

LEVEL 1  

𝑦𝑝𝑖𝑗 = 1 × 𝜂𝑝𝑗 + 𝑒𝑝𝑖𝑗 

𝑒~𝑁(0,𝑅) 

LEVEL 2: 

𝜂𝑝𝑗 =  𝛼𝛼𝑝0 + 𝑢𝑝𝑗 

𝑢~𝑁(0,𝐺) 

Mixed-effects model matrices 𝑅 and 𝐺 correspond to Θ and Ψ matrices in SEM.  Henceforth, we will use 
Θ and Ψ for the observed and latent residual covariance matrices, respectively. For two dependent 
variables, we can write the equation as: 

𝑦1𝑖𝑗 = 1 × 𝜂1𝑗 + 0 × 𝜂2𝑗 + 𝑒1𝑖𝑗 

𝑦2𝑖𝑗 = 0 × 𝜂1𝑗 + 1 × 𝜂2𝑗 + 𝑒2𝑖𝑗 

𝑒~𝑁 ��00� , �𝜃11𝜃21 𝜃22
��, 

𝜂~𝑁 ��
𝛼𝛼1
𝛼𝛼2� , �𝜓11𝜓21 𝜓22

��. 

The above bivariate random-intercepts model has 8 parameters: 

(a) Covariance among level-1 residuals (𝑒𝑝𝑖𝑗), denoted as 𝜃21 in the 𝚯 matrix. 
(b) Covariance among level-2 random-intercepts (𝑢𝑝𝑗), denoted as 𝜓21in the 𝚿 matrix.  
(c) Grand-means of 𝑦1 and 𝑦2, denoted as 𝛼𝛼1 and 𝛼𝛼2 in the 𝜶 vector. 
(d) Variances of level-1 residuals, denoted as  𝜃11 and 𝜃22 in the 𝚯 matrix. 
(e) Variances of the level-2 random-intercepts, denoted as 𝜓11 and 𝜓22 in the 𝚿 matrix. 
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1.2.2 PATH-DIAGRAM 

The following two-level path diagram accurately represents all parameters except the grand means.   

(a) Level-1 residual variances and covariance is represented by curved arrows labeled with the letter r.  
(b) Level-2 variances and covariance among intercepts is represented by curved arrows labeled with 

the letter g.    
(c) Each level-1 dependent variable (𝑦𝑝𝑖𝑗) is influenced by the corresponding level-2 “intercept” (𝜂𝑝𝑗).  

By definition the effect is 1.0.   

 

1.3 FITTING BIVARIATE RANDOM INTERCEPTS MODEL IN XXM 

XXM is an R extension package.  In order to use XXM, it must first be loaded. The R function library() 
does the job.    

library(xxM) 

1.3.1 THE MAIN MODEL 

An n level XXM model is composed of n sub models. The very first step in specifying an XXM model is to 
create a model object by invoking xxmModel().  The idea is to declare names of all levels.    

student

teacher
brim

Y2Y1

η2η1

11g

1 1

21g 22g

11r
21r

22r
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brim <- xxmModel( levels = c( "student", "teacher") )    

 

Internally, xxM assigns level numbers (𝑙𝑛𝑢𝑚 = {1,2, … ,𝑃}) to each level declared in xxMModel(). The 
order of levels is also important. In this case, students are influenced by teachers. Hence, the student 
level must be declared before the teacher level.   

The intent behind this function is obvious.  The function creates an object called brim (i.e., bivariate 
random intercepts model) from a list of level names.  The left hand side is the name of the XXM model.  
The choice of the name is arbitrary and other names such as ladyGaga or cow would work. However, it 
is better to use a short, but descriptive name, as this name will be used in all subsequent commands. 
Internally, the above invocation literally creates a model with placeholders for the student and teacher 

submodels, as depicted below. 

More formally, the function takes a single parameter aptly called levels and expects to receive a list of 
level names. The function creates an XXM object and returns a handle or a pointer to the object in 
memory.  The following command presents a generic invocation of xxmModel().  

xxmObject <- xxmModel(levels = list) 

1.3.2 LEVELS 

At this stage it appears that we have data for students and teachers. Presumably students are nested 
within teachers.  In multilevel modeling jargon, we have two levels with students hierarchically nested 
within teachers.  While the term level is obvious in this simple case, xxM can be used with fairly complex 
data structures in which the notion of levels may not be so easy to identify.   

Levels represent any concrete or abstract set of entities across which some attribute is expected to vary.  
Very simply, a level involves multiple entities of some kind (e.g., students, situations, responses, 

student

teacher

brim
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occasions etc.) for whom there is an attribute or a variable (e.g., IQ or achievement) of interest.  Each 
level may have its own set of observed and/or latent variables.  The definition of levels also implies a 
flow of influence. Levels have a one-directional relationship.  A higher order level is said to influence a 
lower order level. In this case, we know that teachers impact student outcomes.  The directional 
relationships are implicitly conveyed to xxM in how the levels are ordered in the list.  Our goal is to be 
able to specify a latent variable model within and across levels to capture the hypothesized flow of 
influence.  The actual model will be presented later; for now we focus on the mechanics of specifying a 
model in xxM.  We begin with the sub-models for students and teachers. 

1.3.3 SUBMODELS 

Each level may have its very own complete SEM model with observed dependent and exogenous 
independent variables, latent variables, measurement model, and structural model involving all possible 
regressions (observed on observed, observed on latent, latent on observed, and latent on latent).  
Before we can begin to specify the actual model, we need to provide our model object, brim, with basic 
information about each level. This is accomplished by the xxmSubmodel() function. 

brim <- xxmSubmodel( model = “brim”, 

level = “student”,  

parents = c(“teacher”), 

ys = c(“y1”, “y2”), 

xs = , 

etas = , 

data = student ) 

These assignment statements build the sub-model with the constituent parts. The xxmSubmodel() 
function adds basic information to our XXM model object, brim.  The first parameter model, asks for the 
name of the xxM object to which this information is being added.  The second parameter identifies the 
level for the sub-model.  In this case, we are adding information about the student level.  The next 
parameter, parents, defines the nesting relationship involving students. Students are nested within 
teachers and the nesting is captured by the notion of parent and child levels in xxM.  In this case, 
the teacher level is a parent of the student level.  If there were additional levels of nesting, these would 
be added to the list of parents as well. The following code provides an example with four levels: 

parents = c( “family”, “teacher”, “school”, “neighborhood” ) 

The next three arguments are for names of (a) observed dependent variables, (b) observed independent 
variables, and (c) latent variables.  In this case, we have two dependent variables for student (y1 and y2).  
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There are no exogenous predictors or latent variables at the student level.  The final parameter, data, is 
for an R dataset with student data.  The corresponding model for the teacher level is:  

brim <- xxmSubmodel( model = “brim”, 

level = “teacher”,  

parents = , 

ys = , 

xs = , 

etas = c( “eta1”, “eta2” ), 

data = teacher ) 

The teacher level does not have a parent level, nor does it have observed dependent or independent 
variables.  The teacher level does have two latent variables.  The latent variables represent random 
intercepts of student level dependent variables (y1 and y2).  If teachers were nested within a higher 
level such as school, the parents argument would be:   

parents = c( “school” ) 

1.3.4 DATASETS 

For two-level data structures, a single dataset is adequate. However, with complex dependent data 
structures, it is most convenient to provide data for each level separately.   Each dataset must include 
information about how each observation at a lower level is linked to a higher level.  In general, datasets 
must have three types of variables: (a) one or more columns of IDs or variables with linking information, 
(b) zero or more columns of dependent variables corresponding to the list of ys, and (c) zero or more 
columns of independent variables corresponding to the list of xs. While the last two variable types are 
straight forward, the first one requires additional explanation.  The student data (studentData) must 
have the following structure: 

student teacher Y1 Y2 
0 0 .314 -2.115 
1  0 -1.205 -1.972 
2 1 .055 0.917 
3 1 1.03 1.486 

The first column is for the ID variable for the current level, in this case student.  The next set of zero or 
more columns is for the ID variables of each parent of the current level. In this case, student has a single 
parent, teacher. For now, the ID columns must have the same name as the name of the corresponding 
level.  Practically, it means that if in your dataset the ID variables are named studentID and teacherID, 
these must be renamed to student and teacher. 
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The teacher dataset (teacherData) has no observed variables, nor does it have parents. Yet, it is 
necessary to have a dataset listing teacher IDs.   

teacher 
0 
1 
2 
3 

1.3.5 MODEL SPECIFICATION 

So far we created a model object called brim by invoking xxmModel()and declared sub-models for 
student and teacher by invoking xxmSubmodel(). At this point, our model object called brim, looks as 
follows and is just a shell of the final desired model.    

The model object also has actual data for students and teachers along with the linking information.  The 
next logical step would be to specify the actual model, i.e., how observed and latent variables relate to 
each other.  

1.3.6 BIVARIATE RANDOM INTERCEPTS MODEL: XXM MATRICES 

From an XXM perspective, the above model is specified in terms of parameters and matrices associated 
with each level and links among variables across levels.  This sounds complicated, but in reality we will 
simply repeat what we have already stated in previous sections: 

1.3.6.1 LEVEL 1: WITHIN-STUDENT MODEL MATRICES 

student

teacher
brim

Y2Y1

η2η1
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At level-1, we only have variances and a covariance for the residuals. The residual covariance matrix is 
called the theta matrix (Θ). The matrix is symmetric with three free parameters: Two variances and a 
covariance (𝜃12  =  𝜃21). 

Θ = �𝜃11𝜃21 𝜃22
�           

 (1) 

1.3.6.2 WITHIN-TEACHER MODEL MATRICES 

At level-2, we have a covariance and variances among the latent variables, along with their means. 
Latent covariance and mean matrices are called Ψ (psi) and 𝛼𝛼 (alpha), respectively: 

Ψ = �𝜓11𝜓21 𝜓22
�           (2) 

𝛼𝛼 = �𝛼𝛼1𝛼𝛼2
�            (3) 

In this example, we have observed variables only at level-1 and latent variables only at level-2. For more 
complex models, we may have observed and latent variables at multiple levels.  For such models, we 
may have Ψ and Θ matrices at each such level. Complexities of representing such matrices will be 
introduced in subsequent chapters.  

1.3.6.3 ACROSS-LEVEL MODEL MATRICES: FROM TEACHERS TO STUDENTS 

The above three matrices (Θ,Ψ,  & α) capture information about variables within each level. The missing 
piece is the link among variables across levels.  In this case, the teacher-level latent variables influence 
student-level observed variables.  Very concretely, the effects are: 

𝑦1𝑖𝑗 = 1 × 𝜂1𝑗 + 0 × 𝜂2𝑗 + 𝑒1𝑖𝑗 

𝑦2𝑖𝑗 = 0 × 𝜂1𝑗 + 1 × 𝜂2𝑗 + 𝑒2𝑖𝑗 

We can represent the effects in a table, with columns representing the independent variables and rows 
representing the dependent variables. In xxM matrices, columns will always represent independent 
variables and rows will always represent dependent variables, when connecting independent and 
dependent variables.   

 𝜂1𝑗 𝜂2𝑗 
𝑦1𝑖𝑗 1 0 
𝑦2𝑖𝑗 0 1 

With this convention we can now represent the coefficients in a single matrix Λ (lambda): 

Λ = �1 0
0 1�            (4) 
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In LISREL and xxM, Λ matrix is used to capture measurement relationship. In this case, level-2 latent 
variables are said to be measured by level-1 observed variables.    

1.3.6.4 XXM SPCIFICATION OF MODEL MATRICES: OVERVIEW 

We have now defined four matrices that completely specify the underlying bivariate random-intercepts 
model.  Once the model itself is clearly defined, the actual specification is really very trivial.  There are 
just two commands for specifying model matrices: 

brim <- xxmWithinMatrix(…) 

brim <- xxmBetweenMatrix(…) 

Essentially, we want to add the above four matrices to complete the model.   Of the four matrices, the 
first matrix is a within-student matrix (Θ), the next two matrices are within-teacher matrices (Ψ and α) 
and the last matrix (Λ) connects the two levels and is therefore an across-level or between matrix.  At 
this point several things must be obvious: (a) we will need to call xxmWithinMatrix() three times, first for 
the student level and then twice for the teacher level; and (b) xxmBetweenMatrix() will be called once 
connecting the teacher level to the student level.   

brim <- xxmWithinMatrix( model = “brim”,  

level = “student”,  

type = “theta”… ) 

brim <- xxmWithinMatrix( model = “brim”,  

level = “teacher”,  

type = “psi”, … ) 

brim <- xxmBetweenMatrix( model = “brim”,  

parent = “teacher”,  

child = “student”,  

type = “lambda”, …) 

 Now we know the general procedure for adding a matrix to the model.  Let us now examine how a 
matrix to be added is actually specified.   

1.3.6.5 XXM MATRICES: FREE VS. FIXED 

Note that the first three parameter matrices (theta, psi, and alpha) are somewhat different from the last 
matrix (lambda).  The first three matrices include model parameters that are to be freely estimated. In 
contrast, all four elements of the last matrix are fixed. We already know their values.  This idea of free 
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vs. fixed parameters is central in SEM.  In essence, for each parameter we need to tell xxM if the 
parameter is to be estimated or if the parameter is to be fixed to some known value.   For each 
parameter matrix, we need to define two separate matrices: (a) a pattern matrix indicating the pattern 
of free (=1) or fixed (= 0) parameters and (b) a value matrix providing numeric values for fixed-
parameters or start-values for free parameters.  It is easier done than said. We use a two part name 
including: (a) the type of the matrix (theta, psi, alpha, or lambda) and (b) the role of the matrix (pattern 
matrix or value matrix). 

lambda_pattern <- matrix( c(0,0,0,0), 2,2 ) 

lambda_value   <- matrix( c(1,0,0,1), 2,2 ) 

Λ𝑝𝑎𝑡 = �0 0
0 0� ,Λ𝑣𝑎𝑙 = �1.0 0.0

0.0 1.0� 

All elements of pattern matrix for Λ are zero indicating that none of the parameters are free to be 
estimated. Instead, all parameters are to be fixed to some known values. The value matrix provides the 
corresponding values.  The diagonal elements are to be fixed to 1.0, whereas the off-diagonal elements 
are to be fixed to 0.0.  Compare the specification of Λ with that of the Θ matrix: 

theta_pattern <- matrix( c(1,1,1,1), 2,2 ) 

theta_value   <- matrix( c(1.1,.2,.2,2.3), 2,2 ) 

Θ𝑝𝑎𝑡 = �1 1
1 1� ,Θ𝑣𝑎𝑙 = �1.1 0.2

0.2 2.3� 

All four elements of the Θ matrix are to be freely estimated. Hence all four elements in the pattern 
matrix are 1s.  The value matrix provides start values. At this point, you may complain that you do not 
actually have any idea as to what these values may be.  In general, almost any reasonable set of values 
will work.  More specifically, for a residual covariance matrix, the following rules work very well in 
practice: 

(1) Start values for the residual variances or the diagonal elements may be close to the observed 
variances of the respective variables.   

(2) Start values for the residual covariances or the off-diagonal elements may be close to zero.  

So for the following observed covariances matrix, 𝑦 = �6.2 3.1
3.1 5.7�, a reasonable set of starting values 

may be: 

Θ𝑣𝑎𝑙 = �5.1 1.1
1.1 4.9�. 

Again, actual values do not matter much. 
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1.3.6.6 BIVARIATE RANDOM INTERCEPTS MODEL: COMPLETE XXM SPCIFICATION  

First, we create pattern and value matrices corresponding to each of the four model matrices.  

#Within-Student Model Matrices 

theta_pattern <- matrix( c(1,1,1,1), 2,2 ) 

theta_value   <- matrix( c(1.1,.2,.2,2.3), 2,2 ) 

#Within-Teacher Model Matrices 

psi_pattern <- matrix( c(1,1,1,1), 2,2 ) 

psi_value   <- matrix( c(.1,.05,.05,.2), 2,2 ) 

alpha_pattern <- matrix( c(1,1) , 2,1)  

alpha_value <- matrix( c(1.1,2.1) , 2,1)  

# Teacher->Student Across Matrices 

lambda_pattern <- matrix( c(0,0,0,0), 2,2 ) 

lambda_value   <- matrix( c(1,0,0,1), 2,2 )  

Once model matrices are created we add these matrices to our model as described earlier: 

#Within-Student Model Matrices 

brim <- xxmWithinMatrix( model = “brim”,  

level = “student”,  

type = “theta”,  

pattern = theta_pattern, 

value = theta_value) 

#Within-Teacher Model Matrices 

brim <- xxmWithinMatrix( model = “brim”,  

level = “teacher”,  

type = “psi”,  

pattern = psi_pattern, 

value = psi_value)  

brim <- xxmWithinMatrix( model = “brim”,  
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level = “teacher”,  

type = “alpha”,  

pattern = alpha_pattern, 

value = alpha_value) 

#Teacher->Student Across Model Matrices 

brim <- xxmBetweenMatrix( model = “brim”,  

parent = “teacher”,  

child = “student”,  

type = “lambda”,   

pattern = lambda_pattern, 

value = lambda_value) 

The following diagram illustrates a one-to-one correspondence between the path-diagram, 
corresponding model matrices, and xxM specification.  

Y1 Y2

η1

ψ11

1

η2η1

1

ψ22
ψ12

θ11 θ22θ12

teacher

student

1
α1 α2

ψ11

ψ22ψ21

ψ12
Ψ =

θ11

θ22θ21

θ12Θ =

α1
α2

α =

[ [

[ [

[ [

theta_pattern <- matrix(c(1,1,1,1), 2,2)

SEM diagram Matrices xxM code specification

1
10
0

Λ = [ [

theta_value <- matrix(c(1.1,.2,.2,2.3), 2,2)

alpha_pattern <- matrix(c(1,1), 2,1)
alpha_value <- matrix(c(1.1,2.1), 2,1)

psi_pattern <- matrix(c(1,1,1,1), 2,2)
psi_value <- matrix(c(.1,.05,.05,.2), 2,2)

lambda_pattern <- matrix(c(0,0,0,0), 2,2)

lambda_value <- matrix(c(1,0,0,1), 2,2)

intercepts

cross-level linking matrix

residual variance-covariance

latent variance-covariance

 

Note: 

(1) All elements of the factor covariance matrix (psi:Ψ), residual covariance matrix (theta:Θ), and 
the factor-mean matrix (alpha:𝛼𝛼) are freely estimated. All values in respective pattern matrices 
are 1. 

(2) Factor covariance matrix and residual covariance matrix are symmetric.  Hence, there are only 
three free-parameters.  The xxM package constrains off-diagonal elements to be equal 
(𝜃12 = 𝜃21). 
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(3) All elements of the across-level factor-loading matrix (lambda:Λ) are fixed to known values. All 
values in lambda_patten matrix are 0.  The corresponding value matrix indicates that the 
diagonal elements are fixed to 1.0 and off-diagonal elements are fixed to 0.0. 

1.3.7 DO COMPUTE 

If all went well above and xxM did not produce any error messages, then our model object brim 
has all the information it needs to estimate the model parameters.  We can begin estimation by 
issuing a simple command: 

brim <- xxMRun( brim ) 

For the particular problem, the final parameter estimates are: 

student

teacher

brim

l l

Y2Y1

.34

.89.97

η2η1

.13

.16.75

1

 

1.4 BIVARIATE RANDOM INTERCEPTS MODEL: CODE LISTING 

In this section, we gather code for fitting the bivariate-random intercepts model in xxM as well as in 
other software packages such as SAS and Mplus. 

1.4.1 SAS: PROC MIXED 

SAS assumes that the dataset is in an univariate format with two columns of IDs: teacher and vars and a 
single column with dependent variables.   
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Proc Mixed data = brim covtest; 

 CLASS teacher vars; 

 MODEL y = vars / solution noint; 

 RANDOM vars / subject = teacher type = un; 

 REPEATED vars/ subject = student(teacher) type = un; 

RUN; 

 

1.4.2 MPLUS 

DATA: 

  File = 'brim.dat'; 

VARIABLE: 

  NAMES are y1 y2 teacher; 

  CLUSTER = teacher; 

MODEL: 

 %WITHIN% 

  y1 y2; 

  y1 with y2; 

 %BETWEEN% 

  y1 y2; 

  y1 with y2; 

  [y1 y2]; 

1.4.3 XXM 

Complete code for the xxM specification is repeated here. 

library(xxM) 

brim <- xxmModel( levels = c( "student", "teacher") )  

brim <- xxmSubmodel( model = “brim”, level = “student”, parents =  

c(“teacher”), ys = c(“y1”, “y2”), xs =, etas = , data = student ) 

brim <- xxmSubmodel( model = “brim”, level = “teacher”, parents = , ys 
= , 

xs = , etas = c( “eta1”, “eta2” ), data = teacher ) 
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theta_pattern <- matrix( c(1,1,1,1), 2,2 ) 

theta_value   <- matrix( c(1.1,.2,.2,2.3), 2,2 ) 

psi_pattern <- matrix( c(1,1,1,1), 2,2 ) 

psi_value   <- matrix( c(.1,.05,.05,.2), 2,2 ) 

alpha_pattern <- matrix( c(1,1) , 2,1)  

alpha_value <- matrix( c(1.1,2.1) , 2,1)  

lambda_pattern <- matrix( c(0,0,0,0), 2,2 ) 

lambda_value   <- matrix( c(1,0,0,1), 2,2 )  

brim <- xxmWithinMatrix( model = “brim”, level = “student”, type = 
“theta”,  

pattern = theta_pattern, value = theta_value) 

brim <- xxmWithinMatrix( model = “brim”, level = “teacher”, type = 
“psi”,  

pattern = psi_pattern, value = psi_value)  

brim <- xxmWithinMatrix( model = “brim”, level = “teacher”, type = 
“alpha”,  

pattern = alpha_pattern, value = alpha_value) 

brim <- xxmBetweenMatrix( model = “brim”, parent = “teacher”, child =  

“student”, type = “lambda”,  pattern = lambda_pattern, value =  

lambda_value) 

brim <- xxmRun( brim ) 

brim <- xxmCI( brim ) 

xxmSummary( brim ) 

est <- xxmGet( brim, what=”estimates” ) 

lik <- xxmGet( brim, what=”fit” ) 

brim <- xxmFree( brim ) 

1.5 COMPLETE XXM MODEL  

xxM is a modeling framework inspired by LISREL and generalized to a model that is defined as a network 
of SEM sub-models, in which variables across levels are also related by LISREL-like matrices.   
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1.5.1 OBSERVED DEPENDENT VARIABLES VS. EXOGENOUS INDEPENDENT VARIABLES 

In ordinary multiple and multilevel regression, observed predictors are assumed to be strictly 
exogenous, fixed, and without measurement error.  In SEM, with possible latent independent variables 
the distinction is frequently blurred.  xxM follows the regression tradition of making an explicit and 
concrete distinction between a modeled observed dependent variable and an exogenous predictor.   

1.5.2 WHAT IS A LATENT VARIABLE IN XXM? 

xxM blurs the distinction between an unobserved latent variable in a SEM sense in which a latent 
variable is defined by multiple hypothesized observed indicators and a random-effect in a multilevel 
modeling sense in which the latent variable is thought of as an unobserved variable measured at a 
higher clustering level on an observed variable measured at a lower level.  Indeed in the current 
example, random-intercepts for clustered data were conceptualized as teacher latent variables and 
measured by observed indicators at the student level.  

1.5.3 WITHIN-MATRICES 

Possible student and teacher sub-models may include the matrices in the following table. The bolded 
within matrices were entered in the previous xxM code. The rows of the table represent model 
dependent variables. There may be observed and/or latent dependent variables at any level.  As in 
ordinary SEM model, variables may have means and covariances (or intercepts and residual 
covariances). SEM models allow for directional relationships among observed and latent variables. With 
two possible types of dependent variables (latent and observed) and two possible types of independent 
variables (latent and exogenous observed), there are four total directional relationships. 
Mathematically, all four represent linear effect of a variable on another variable.  Conceptually, 
however, we make a distinction between measurement and structural relationships.  Regression of an 
observed variable on a latent variable, when the observed variable is thought of as an indicator of the 
latent variable, is called a measurement model (Λ).  The remaining three matrices (Β,Κ & Γ) are part of 
the structural model.  

Teacher submodel Mean/intercept 
(Residual) 
covariance 

Latent  Variable Observed  
Exogenous variable 

Latent Variable 𝛼𝛼,  Ψ Β Γ 

Observed Dependent- 
variable 

𝜈𝜈,  Θ Λ Κ 

Student submodel Mean/intercept 
(Residual) 
covariance 

Latent  Variable Observed  
Exogenous variable 
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1.5.4 ACROSS-MATRICES: TEACHER TO STUDENT 

Across levels matrices capture the influence of a higher level variable on a lower level variable.  Hence, 
only the four directional matrices are allowed. The lambda matrix (in bold) was entered into the current 
model.  

 Teacher Latent  
Variable 

Teacher Observed  
Exogenous variable 

Student Latent Variable 𝛣𝛣 𝛤𝛤 

Student Observed 
Dependent variable 

𝛬𝛬 𝛫𝛫 

 

 

  

Latent Variable 𝛼𝛼,  Ψ Β Γ 

Observed Dependent- 
variable 

𝜈𝜈,  Θ Λ Κ 
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2 RANDOM SLOPES MODEL 

The model description so far is very much like a SEM model for multiple levels.  In this chapter, we 
examine conventional random-slopes model for two level data. Mehta and West (2000) demonstrated 
how a longitudinal model with random-slopes for time may be estimated within an SEM context.  Mehta 
and Neale (2005) extended the idea to random-slopes model for the case of clustered data.   Another 
example of fitting a random slopes model can be found in Branum-Martin (2013).  

2.1 RANDOM SLOPES MODEL 

2.1.1 TWO-LEVEL EQUATIONS (MULTILEVEL MODELING REPRESENTATION) 

𝑦𝑖𝑗 =  𝑏0𝑗 + 𝑏1𝑗 × 𝑥𝑖𝑗 + 𝑒𝑖𝑗   

𝑏0𝑗 =  𝛾00 + 𝑢0𝑗 

𝑏1𝑗 = 𝛾10 + 𝑢1𝑗 

𝑒~𝑁(0, θ11) 

𝑢~𝑁(0,Ψ) 

In a random slopes model, the effect of a level-1 independent variable (𝑥𝑖𝑗) on a level-1 dependent 
variable (𝑦𝑖𝑗) varies randomly across level-2 units. Such models are also known as the random-
coefficients model, as the regression-coefficients (𝑏0𝑗& 𝑏1𝑗) vary randomly.  Such random-effects are 
unobserved or latent variables at level-2.  In xxM, random-effects are treated as latent variables. Using 
the SEM notation for a latent variable (𝜂) the above equations may be written as:  

𝑦𝑖𝑗 =  1𝑖𝑗 × 𝜂0𝑗 + 𝑥𝑖𝑗 ×  𝜂1𝑗 + 𝑒𝑖𝑗   

𝜂0𝑗 =  𝛾00 + 𝑢0𝑗 

𝜂1𝑗 = 𝛾10 + 𝑢1𝑗 

Note that the coefficients are random or latent variables, whereas the predictors (1𝑖𝑗 & 𝑥𝑖𝑗) are fixed.   
We can use a SEM measurement model to capture the directional relationship between random-effects 
at level-2 and observed variables at level-1, in which the factor loadings are fixed to level-1 values of 
fixed predictors.  With this mind-set, the factor-loading matrix (Λ) has a single row and two columns: 

Λ = [1.0 𝑥𝑖𝑗]. 

The first column is fixed to 1.0, whereas the second column is fixed to student-specific values of 𝑥𝑖𝑗.  The 
idea of fixing factor-loadings for specifying multilevel random slopes was introduced in the context of 
growth curve modeling in Mehta and West (2000) and extended to clustered data and general multilevel 
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case in Mehta and Neale (2005).  The following path-diagram has a one-to-one correspondence to the 
first and second level equations for a random-slope model. 

 

2.1.2 PATH DIAGRAM 

student

teacher

ranslp

η2η1

Yij

xij1

1 1

2,2
1,1ψ 2,2

2,1ψ
2,2
2,2ψ

1,1
1,1θ

 

2.1.3 TWO-LEVEL EQUATIONS (N-LEVEL SEM REPRESENTATION) 

In the previous chapter, we used the simplest representation of a bivariate mixed-effects model. In this 
chapter, we will use a proper representation of a multilevel SEM model that generalizes to models with 
any number of levels. We begin by rewriting the conventional random-slopes model: 

𝑦𝑖
(1) = 1𝑖,𝑗

(1,2) × 𝜂1,𝑗
(2) + 𝑥𝑖,𝑗

(1,2) × 𝜂2,𝑗
(2) + 𝑒𝑖

(1) 

More generally, we can use a matrix representation: 

𝑦𝑖
(1) = Λ𝑖,𝑗

(1,2) × 𝜂𝑗
(2) + 𝑒𝑖

(1) 

where, 

Λ𝑖𝑗
(1,2) = [1.0 𝑥𝑖𝑗]. 

𝑒~𝑁�0,Θ(1,1)� 

𝜂~𝑁�𝛼𝛼,Ψ(2,2� 
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2.1.4 XXM MODEL MATRICES 

Matrices used in the above equations are described at length below. 

2.1.4.1 LEVEL-1: WITHIN MATRICES 

In this example, we will use superscripts for associating each within-matrix to a given level.  The rules of 
superscripts (for levels) correspond to the rules for subscripts (for variables).   

2.1.4.1.1 RESIDUAL COVARIANCE MATRIX 

At level-1, we have a single dependent variable and hence a single parameter level-1 residual variance 
(𝜃1,1). Hence, the residual covariance or theta matrix is a (1 × 1) matrix: 

Θ1,1 = �𝜃1,1
1,1�. 

The residual covariance matrix includes a superscript {1,1} to indicate that the matrix belongs to level-1.   
In principle it is possible to define covariance between variables across two different levels. For example, 
residual-covariance between the 3rd observed variable at level-5 and the 4th observed variable at level-2 
may be represented as: 𝜃4,3

2,5. In this case, the superscripts indicate the levels of the respective variables 
in the subscript.   

2.1.4.2 LEVEL-2: WITHIN MATRICES 

At level-2, we have two latent variables for the intercept and the slope and hence we have two latent 
means and a covariance matrix.  In SEM, the latent variable mean vector is called alpha (𝛼𝛼) and the 
latent variable covariance matrix is called psi (Ψ) 

2.1.4.2.1 LATENT MEANS 

With two latent variables, the latent variable mean matrix is a (2 × 1) matrix: 

𝛼𝛼1 = �
𝛼𝛼11

𝛼𝛼21
� 

𝛼𝛼11 is the mean of the intercept and is the mean of the slope parameter or the average effect of 𝑥𝑖𝑗  on 
𝑦𝑖𝑗.  In the parlance of mixed-effects models, the latent means represent the fixed-effects of intercepts 
and slopes, respectively. 

2.1.4.2.2 LATENT FACTOR COVARIANCE MATRIX 

Latent covariance matrix is a (2 × 2) matrix with two variances and a single covariance: 
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Ψ2,2 = �
𝜓1,1
2,2

𝜓2,1
2,2 𝜓2,2

2,2�  

𝜓1,1
2,2 is the variance of the intercept factor representing variability in the intercept of 𝑦𝑖𝑗 across level-2 

units and 𝜓2,2
2,2  is the variance of the slope parameter representing variability in the effect of 𝑥𝑖𝑗 on 𝑦𝑖𝑗. 

Finally, 𝜓2,1
2,2  is the covariance between the intercept and slope factors.  In the parlance of mixed-effects 

models, the psi matrix represents the covariance among the random-effects. 

2.1.4.3 ACROSS LEVEL MATRICES: TEACHER TO STUDENT 

As described above, we need to capture the effect of level-2 intercept and slope factors on the level-1 
dependent variable using a factor-loading matrix with fixed parameters. 

The factor-loading matrix (Λ1,2) has a single row and two columns (1 × 2): 

Λ1,2 = [1.0 𝑥𝑖𝑗]. 

The first column is fixed to 1.0, whereas the second column is fixed to student-specific values of 𝑥𝑖𝑗.  
Note that we use superscripts to indicate that the factor-loading matrix connects latent variables at 
level-2 with observed variables at level-1.  In fact, for an xxM model with multiple levels and observed 
and latent variables at each level, all model matrices require superscripts to uniquely associate the 
matrix with the level.  In order to keep things simple, we have avoided superscripts for simple models 
considered so far.  Very quickly it will become apparent that superscripts are necessary for our sanity. 

2.2 CODE LISTING 

2.2.1 SAS PROC MIXED 
 

Proc Mixed data = ranslp covtest; 

CLASS teacher; 

MODEL y = x/s; 

RANDOM Intercept x/subject = teacher G type = UN; 

RUN; 

SAS code for a random-slopes model uses a CLASS statement to identify the level-2 units, in this case 
teacher. The MODEL statement estimates the fixed-effects (𝛼𝛼). The RANDOM statement specifies that 
the level-1 intercepts and the effect of level-1 predictor 𝑥𝑖𝑗 is allowed to vary across “subject” (i.e., the 
level-2 units).  The covariance among the random-effects is freely estimated (specified  by a “type = 
UN”) and the covariance matrix is referred to as the G matrix.  The G matrix corresponds to the xxM Ψ 
matrix.  Finally, like all regression models, Proc Mixed estimates the residual variance of level-1 
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dependent variable (𝜃1,1) by default.  The important thing to note is that there is one-to-one 
correspondence between the parameters estimated in Proc Mixed and SEM. 

2.2.2 MPLUS 

Mplus allows random-slopes model to be estimated for two level data. 

TITLE: Random Slopes 

DATA: File is ranslp.dat; 

VARIABLE: 

  Names = y x teacher; 

  Within= x; 

  Cluster = teacher; 

ANALYSIS: 

  TYPE = TWOLEVEL RANDOM; 

MODEL: 

%WITHIN% 

s | y ON x; 

y; 

%BETWEEN% 

y s; 

y with s; 

[y s]; 

At level-1, the vertical bar in “s | y ON x;” is a command to treat the regression of y on x as random at 
level-2.  The name “s” on the left side of the bar is the name of the random-effect, in this case the 
random slope. At level-2, “y” represents the intercept of the corresponding level-1 dependent variable.  
The same five parameters are estimated at level-2: means of the intercepts and slopes (“[y  s];”), their 
respective variances (“ y s;”) and their covariance (“y with s;”).  

2.2.3 XXM 

The following code for the random-slopes model is nearly identical to the bivariate random-intercepts 
model presented earlier.  In this case, there is a single level-1 dependent variable and a single level-1 
independent variable.  The number of matrices is the same as before; however, their dimensions are 
different as we have a single as opposed to two level-1 dependent variables.  Practically, speaking the 
only new element is that the second factor-loading is fixed to 𝑥𝑖𝑗.  This is accomplished by using an 
additional label matrix for the factor-loading matrix.   This is what we want to do: 
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1. We do not wish to estimate any factor-loadings.  Factor-loadings are fixed to 1 and 𝑥𝑖𝑗.  Hence, 
both elements of pattern matrix are zero: 

Λ𝑝𝑎𝑡
1,2 = [0 0] 

2. We want to fix the first factor-loading to 1.0 (intercept).  We use the value matrix to provide the 
fixed-value of 1.0 for the first factor-loading.  The second factor-loading does not have a single 
fixed value for every observation.  Instead each observation (𝑖) would have its own value for that 
factor-loading (𝑥𝑖𝑗  ). Clearly, the value matrix cannot be used for providing individual specific 
fixed values. Hence, the second element in the value matrix is left as 0.0.  xxM ignores it 
internally. 

Λ𝑣𝑎𝑙
1,2 = [1.0 0.0] 

3. The job of fixing the factor-loading is left to the label matrix.  A label matrix is used to assign 
labels to each parameter within the matrix.  Label matrices can be used to impose equality 
constraints across matrices.  Any two parameters with the same label are constrained to be 
equal.  Label matrices are also used for specifying that a specific parameter is to be fixed to 
data-values.  In this case, the first label is irrelevant as that parameter has already been fixed to 
1.0.  We use a descriptive label lambda_11 as the first label (something such as Justin would 
have worked as well).  The second factor-loading is the one we are interested in.  We want to fix 
the second factor-loading to the observation specific value of the predictor (𝑥𝑖𝑗).  This is 
accomplished by using a two-part label: levelName.predictorName.  In this case, the predictor is 
a student level variable.  Hence, the first part of the label is student.  The second part is the 
actual predictor name, in this case x.   

Λ𝑙𝑎𝑏𝑒𝑙
1,2 = [𝑙1,1 𝑥𝑖𝑗] 

lambda_label   <- matrix( c(“lambda_11”,”student.x”), 2, 1 )  

The complete listing of xxM code for the random-slopes example follows: 

library(xxm) 

data(pcwa.xxm, package="xxm") 

ranslp <- xxmModel( levels = c( "student", "teacher") )  

ranslp <- xxmSubmodel(model = ranslp, level = "student", parents = 
"teacher", ys = "pc", xs = c("wa"), etas = , data = pcwa.student) 

ranslp <- xxmSubmodel(model = ranslp, level = "teacher", parents = , 
ys = , xs = , etas = c("int","slp"),data = pcwa.teacher) 

alpha_pattern <- matrix(1, 2,1) 
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alpha_value <- (matrix(c(443,1), 2,1)) 

psi_pattern <- matrix(1, 2,2) 

psi_value <- (matrix(c(10,.0,.0,.05), 2,2)) 

lambda_pattern <- matrix(c(0,0), 1,2) 

lambda_value <- (matrix(c(1,0), 1,2)) 

lambda_label <- (matrix(c("l11","student.wa"), 1,2)) 

theta_pattern <- matrix(1, 1,1) 

theta_value <- (matrix(200., 1,1)) 

ranslp <- xxmWithinMatrix(model = ranslp, level = "student", type = 
"theta", pattern = theta_pattern, value = theta_value,,) 

ranslp <- xxmWithinMatrix(model = ranslp, level = "teacher", type = 
"alpha", pattern = alpha_pattern, value = alpha_value,,) 

ranslp <- xxmWithinMatrix(model = ranslp, level = "teacher", type = 
"psi", pattern = psi_pattern, value = psi_value,,) 

ranslp <- xxmBetweenMatrix(model = ranslp, parent = "teacher",child = 
"student", type = "lambda", pattern = lambda_pattern, value = 
lambda_value, label = lambda_label,) 

ranslp  <-xxmRun(ranslp) 

ranslp <- xxmCI(ranslp) 

xxmSummary(ranslp) 

ranslp <- xxmFree(ranslp) 

rm(list=ls()) 

The above code appears to be very complicated.  However, as the model becomes increasingly complex 
with multiple levels, variables, and constraints, the xxM code will remain succinct. Thus, although there 
is an overhead for simple models, for complex models the matrix notation is a blessing.   
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3 LATENT GROWTH CURVE MODEL: LONG FORMAT 

The model equations and matrices in the present example are identical to the previous.  However, there 
are two key features that make the present model distinct: (1) level-1 observations represent reaction 
times nested within individuals and (2) the level-1 predictor measures time since the study began 
(measurement occasion), leading to a latent growth curve model (LGC).  We have chosen to structure 
the data in a manner consistent with the mixed-effects modeling approach to LGC analysis, which also 
allows us to draw an explicit parallel between the present model and the more general random-slopes 
model (example 2) in which the level-1 predictor represents another attribute of the level-1 unit.   The 
data for the present example were drawn from the Reisby et al. (1977) example described in Hedeker’s 
(2004) introduction to growth modeling chapter.  The outcome is ratings on the Hamilton depression 
rating scale (Hamilton, 1960). Depressions scores were taken over a period of weeks. A baseline was 
taken (week 0). Ratings were then taken after a week of the subjects consuming a placebo (week 1) and 
the following four weeks (week 1-5) participant took a depression drug.  

UNIVARIATE LGC MODEL – LONG FORMAT 

3.1.1 TWO-LEVEL EQUATIONS 

𝐻𝑎𝑚𝐷𝑖𝑗 =  1𝑖𝑗 × 𝜂𝐼𝑛𝑡𝑗 + 𝑤𝑒𝑒𝑘𝑖𝑗 ×  𝜂𝑆𝑙𝑜𝑝𝑒𝑗 + 𝑒𝑖𝑗   

𝜂𝐼𝑛𝑡𝑗 =  𝛾00 + 𝑢0𝑗 

𝜂𝑆𝑙𝑜𝑝𝑒𝑗 = 𝛾10 + 𝑢1𝑗 

As in the previous model, the coefficients are latent variables and the predictors (1𝑖𝑗& 𝑤𝑒𝑒𝑘𝑖𝑗) are fixed.  
The following path-diagram has a one-to-one correspondence to the first and second level equations for 
a random-slopes model. 

3.2 NL-SEM REPRESENTATION 

𝑦𝑖
(1) = 1𝑖,𝑗

(1,2) × 𝜂1,𝑗
(2) + 𝑤𝑖,𝑗

(1,2) × 𝜂2,𝑗
(2) + 𝑒𝑖

(1) 

More generally, we can use a matrix representation: 

𝑦𝑖
(1) = Λ𝑖,𝑗

(1,2) × 𝜂𝑗
(2) + 𝑒𝑖

(1) 

where, 

Λ𝑖𝑗
(1,2) = [1.0 𝑤𝑖𝑗]. 

𝑒~𝑁�0,Θ(1,1)� 

𝜂~𝑁�𝛼𝛼,Ψ(2,2� 
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3.2.1 PATH DIAGRAM 
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3.2.2 XXM MODEL MATRICES 

3.2.2.1 LEVEL-1: WITHIN MATRICES 

3.2.2.1.1 RESIDUAL COVARIANCE MATRIX 

As before, we have a single dependent variable and hence a single parameter level-1 residual variance 
(𝜃1,1) at level-1. Hence, the residual covariance or theta matrix is a (1 × 1) matrix: 

Θ1,1 = �𝜃1,1
1,1�. 

3.2.2.2 LEVEL-2: WITHIN MATRICES 

At level-2, we have two latent variables: Intercept and slope. Hence, we have two latent means and a 
covariance matrix. 

3.2.2.2.1 LATENT MEANS 

The latent variable mean matrix is a (2 × 1) matrix: 
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𝛼𝛼2 = �
𝛼𝛼12

𝛼𝛼22
� 

𝛼𝛼12 is the mean of the intercept and 𝛼𝛼22 is the mean of the slope parameter or the average effect of 
𝑤𝑒𝑒𝑘𝑖𝑗 on 𝐻𝑎𝑚𝐷𝑖𝑗, a measure of depression.  

3.2.2.2.2 LATENT FACTOR COVARIANCE MATRIX 

The latent covariance matrix is a (2 × 2) matrix with two variances and single covariance: 

Ψ2,2 = �
𝜓1,1
2,2

𝜓2,1
2,2 𝜓2,2

2,2�  

𝜓1,1
2,2 is the variance of the intercept factor representing variability in the intercept of 𝑦𝑖𝑗 across persons 

and  𝜓2,2
2,2 is the variance of the slope parameter representing between-persons variability in the effect 

of 𝑤𝑒𝑒𝑘𝑖𝑗 on 𝐻𝑎𝑚𝐷𝑖𝑗. Finally, 𝜓2,1
2,2 is the covariance between the intercept and slope factors.   

3.2.2.3 ACROSS LEVEL MATRICES: PERSON TO RESPONSE 

As described above, we need to capture the effect of level-2 intercept and slope factors on the level-1 
dependent variable using a factor-loading matrix with fixed parameters. 

The factor-loading matrix (Λ1,2) has a single row and two columns (1 × 2): 

Λ1,2 = [1.0 𝑤𝑒𝑒𝑘𝑖𝑗]. 

The first column is fixed to 1.0, whereas the second column is fixed to person-specific values of 𝑤𝑒𝑒𝑘𝑖𝑗.  
Collectively, the within and across-level matrices described here specify all of the parameters necessary 
to model individual differences in  over-time trajectories of reaction times across persons.   Next, we 
provide SAS, MPlus, and xxM code for fitting LGCs. 

3.3 CODE LISTING 

3.3.1 SAS PROC MIXED 
 

Proc Mixed data = reisby covtest; 

CLASS subject; 

MODEL HamD = week/s; 

RANDOM Intercept week/subject = subject G type = UN; 

RUN; 
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SAS code for a random-slopes model uses a CLASS statement to identify the level-2 units, in this case 
person. The MODEL statement estimates the fixed-effects (𝛼𝛼). The RANDOM statement specifies that 
the level-1 intercepts and the effect of level-1 predictor 𝑤𝑒𝑒𝑘𝑖𝑗 is allowed to vary across “subject” (i.e., 
persons).  The covariance among the random-effects (G) is freely estimated (specified by “type = UN”).  
The G matrix corresponds to the xxM Ψ matrix.  Finally, like all regression models, Proc Mixed estimates 
the residual variance of the level-1 dependent variable (𝜃1,1) by default.  The important thing to note is 
that there is one-to-one correspondence between the parameters estimated in Proc Mixed and SEM. 

3.3.2 MPLUS 

Mplus allows latent growth curve model (long version) model to be estimated for two level data. 

TITLE: Univariate LGC 

DATA: File is reisby.dat; 

VARIABLE: 

  Names = HamD week subject; 

  Within= x; 

  Cluster = subject; 

ANALYSIS: 

  TYPE = TWOLEVEL RANDOM; 

MODEL: 

%WITHIN% 

s | HamD ON week; 

HamD; 

%BETWEEN% 

HamD s; 

HamD with s; 

[HamD s]; 

At level-1, the vertical bar in “s | HamD ON week;” is a command to treat the regression of HamD scores 
(HamD) on week as random at level-2.  The name “s” on the left side of the bar is the name of the 
random-effect, in this case the random-slope. At level-2, “HamD” represents the intercept of the 
corresponding level-1 dependent variable.  The same five parameters are estimated at level-2: means of 
the intercepts and slopes (“[HamD  s];”), their respective variances (“HamD s;”), and their covariance 
(“HamD with s;”) 

3.3.3 XXM 
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As in the previous example, there is a single level-1 dependent variable and a single level-1 independent 
variable.  The number of matrices is the same as before, and their dimensions are also identical. : 

1. We do not wish to estimate any factor-loadings.  Factor-loadings are fixed to 1.0 and 𝑤𝑒𝑒𝑘𝑖𝑗.  
Hence, both elements of pattern matrix are zero: 

Λ𝑝𝑎𝑡 = [0 0] 

2. We want to fix the first-factor loading to 1.0 (intercept).  We use the value matrix to provide the 
fixed-value of 1.0 for the first factor-loading.  The second factor-loading does not have a single 
fixed value for every observation.  Instead each observation (𝑖) would have its own value for that 
factor-loading (𝑥𝑖𝑗  ). Clearly, the value matrix cannot be used for providing individual specific 
fixed values. Hence, the second element in the value matrix is left as 0.0.  xxM ignores it 
internally. 

Λ𝑣𝑎𝑙 = [1.0 0.0] 

3. The job of fixing the factor-loading is left to the label matrix.  A label matrix is used to assign 
labels to each parameter within the matrix.  Label matrices can be used to impose equality 
constraints across matrices.  Any two parameters with the same label are constrained to be 
equal.  Label matrices are also used for specifying that a specific parameter is to be fixed to 
data-values.  In this case, the first-label is irrelevant as that parameter has already been fixed to 
1.0.  We use a descriptive label lambda_11 as the first label (something such as Justin would 
have worked as well).  The second factor-loading is the one we are interested in.  We want to fix 
the second factor-loading to the observation specific values of the predictor (𝑤𝑒𝑒𝑘𝑖𝑗).  This is 
accomplished by using a two-part label: levelName.predictorName.  In this case, the predictor is 
a response level variable.  Hence, the first part of the label is response.  The second part is the 
actual predictor name, in this case week.   

Λ𝑙𝑎𝑏𝑒𝑙 = [𝑙1,1 𝑤𝑒𝑒𝑘𝑖𝑗] 

lambda_label   <- matrix( c(“lambda_11”,”response.week”), 2, 1 )  

The complete listing of xxM code for the latent growth curve (long version) example follows. 

reisby <- xxmModel( levels = c( "response", "subject") )  

reisby <- xxmSubmodel( model = reisby, level = "response", parents = 
c("subject"), ys = c("hamd"), xs = c("week"), etas = , data = response 
) 

reisby <- xxmSubmodel( model = reisby, level = "subject", parents = , 
ys = , xs = , etas = c("Int", "Slope"), data = subject) 

theta_pattern <- matrix( 1,1,1 ) 
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theta_value   <- matrix( 20,1,1 ) 

psi_pattern <- matrix( c(1,1,1,1), 2,2 ) 

psi_value   <- matrix( c(1,.01,.01,1), 2,2 ) 

alpha_pattern <- matrix( c(1,1) , 2,1)  

alpha_value <- matrix( c(10, -.4) , 2,1)  

lambda_pattern <- matrix( c(0,0), 1, 2 )  

lambda_value   <- matrix( c(1,0), 1, 2 )  

lambda_label   <- matrix( c("lambda_11", "response.week"), 1, 2 )  

reisby <- xxmWithinMatrix( model = reisby, level = "response", type = 
"theta", pattern = theta_pattern, value = theta_value) 

reisby <- xxmWithinMatrix( model = reisby, level = "subject", type  = 
"psi", pattern = psi_pattern, value = psi_value)  

reisby <- xxmWithinMatrix( model = reisby, level = "subject", type = 
"alpha", pattern = alpha_pattern, value = alpha_value) 

riesby <- xxmBetweenMatrix( model = riesby, parent = "subject", child 
= "response", type = "lambda",  pattern = lambda_pattern, value = 
lambda_value, label = lambda_label) 

riesby <- xxmRun( riesby ) 

3.4 RESULTS 

response

person

Reisby

ηSlopeηInt

-1.4

2.112.6

HamDij

12.2

weekij1

1
23.6

1
-2.4
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4 LATENT GROWTH CURVE MODEL – WIDE FORMAT 

Next, we provide a mathematically equivalent representation of the previous example. In this version 
we use conventional SEM formulation of latent growth curves. The data must first be in a wide format, 
with columns for each week (week 0- week 5) that contain the Hamilton depression ratings for that 
week.   Below are the first two rows of the wide format of the Reisby data:  

  subject HamD0 HamD1 HamD2 HamdD3 HamD4 HamD5 

1     101    26    22    18      7     4     3 

2     103    33    24    15     24    15    13 

4.1 UNIVARIATE LGC MODEL –WIDE FORMAT 

4.1.1 EQUATIONS 

We begin with the single equation from the previous chapter.  

𝐻𝑎𝑚𝐷𝑖𝑤 =  1 × 𝜂0𝑖 + 𝑥𝑤 × 𝜂1𝑖 + 𝑒𝑖𝑤.  

where  𝑤 = 1, 2, 3, 4, 5,  and 6 and 𝑥𝑤 = 0, 1, 2, 3, 4, and 5. 𝜂0𝑖 is the initial status (Hamilton depression 
rating at the baseline for each participant) and 𝜂1𝑖 is the growth rate (trend) for subject 𝑖.   

If we rewrite equation for the six occasions we get: 

𝐻𝑎𝑚𝐷𝑖1 =  1 × 𝜂0𝑖 + 0 ×  𝜂1𝑖 + 𝑒𝑖1   

𝐻𝑎𝑚𝐷𝑖2 =  1 × 𝜂0𝑖 + 1 ×  𝜂1𝑖 + 𝑒𝑖2   

𝐻𝑎𝑚𝐷𝑖3 =  1 × 𝜂0𝑖 + 2 ×  𝜂1𝑖 + 𝑒𝑖3   

𝐻𝑎𝑚𝐷𝑖4 =  1 × 𝜂0𝑖 + 3 ×  𝜂1𝑖 + 𝑒𝑖4   

𝐻𝑎𝑚𝐷𝑖5 =  1 × 𝜂0𝑖 + 4 ×  𝜂1𝑖 + 𝑒𝑖5   

𝐻𝑎𝑚𝐷𝑖6 =  1 × 𝜂0𝑖 + 5 ×  𝜂1𝑖 + 𝑒𝑖6   

 

4.1.2 NL-SEM REPRESENTATION 

𝑦𝑖
(1) = 1𝑖,𝑖

(1,1) × 𝜂1,𝑖
(1) + 𝑥𝑖,𝑖

(1,1) × 𝜂2,𝑖
(1) + 𝑒𝑖

(1) 

More generally, we can use a matrix representation: 

𝑦𝑖
(1) = Λ𝑖,𝑖

(1,1) × 𝜂𝑖
(1) + 𝑒𝑖

(1) 
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where, 

Λ𝑖,𝑖
(1,1) = [1.0 𝑥𝑖𝑗]. 

𝑒~𝑁�0,Θ(1,1)� 

𝜂~𝑁�𝛼𝛼,Ψ(2,2� 

4.1.3 PATH DIAGRAM 

person

Reisby

1

1 1

1,1
1,1ψ

1,1
2,1ψ

1,1
2,2ψ

1,1
1,1θ 1,1

2,2θ
1,1
3,3θ

1,1
4,4θ 1,1

5,5θ
1,1
6,6θ

1 1 1
1

0 11
2 3 4 5

1iHamD 2iHamD 3iHamD 4iHamD 5iHamD 6iHamD

iη0 iη1

 

4.1.4 XXM MODEL MATRICES 

4.1.4.1.1 RESIDUAL COVARIANCE MATRIX 

We have six observed variables. Hence, the residual covariance or theta matrix is a (6 × 6) diagonal 
matrix: 
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Θ1,1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜃1,1

1,1

𝜃2,2
1,1

𝜃3,3
1,1

𝜃4,4
1,1

𝜃5,5
1,1

𝜃6,6
1,1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

Unlike the long format, in this case the residual variances at each occasion present themselves for our 
consideration.  We can see them! To keep the model consistent with the one estimated in the long 
format, we must constrain all 6 diagonal elements to be equal. 

4.1.4.1.2 LATENT MEANS 

The latent variable mean matrix is a (2 × 1) matrix: 

𝛼𝛼1 = �
𝛼𝛼11

𝛼𝛼21
� 

𝛼𝛼11 is the mean of 𝜂0𝑖 (equivalent to the intercept in example 3) and 𝛼𝛼21 is the mean of 𝜂1𝑖 (equivalent to 
the slope in example 3).  

4.1.4.1.3 LATENT FACTOR COVARIANCE MATRIX 

The latent covariance matrix is a (2 × 2) matrix with two variances and single covariance: 

Ψ1,1 = �
𝜓1,1
1,1

𝜓2,1
1,1 𝜓2,2

1,1�  

𝜓1,1
1,1 is the variance of the initial status representing variability in 𝜂0𝑖 across persons and  𝜓2,2

1,1 is the 

variance of the growth trend representing variability in 𝜂1𝑖. Finally, 𝜓2,1
1,1 is the covariance between the 

two.   

4.1.4.1.4 LAMBDA MATRIX 

The lambda matrix is 6 X 2. The rows represent the observed variables (HamD1-HamD6) and the 
columns represent the latent variables. As in the case of the long format, the factor loadings are not 
estimated. Instead these are fixed to. The first column is fixed to 1.0 and the second column is fixed to 
person specific values of ‘time’. 
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Λ1,1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜆1,1
1,1

𝜆2,1
1,1

𝜆3,1
1,1

𝜆1,2
1,1

𝜆2,2
1,1

𝜆3,2
1,1

𝜆3,1
1,1

𝜆5,1
1,1

𝜆6,1
1,1

𝜆4,2
1,1

𝜆5,2
1,1

𝜆6,2
1,1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
1 0
1 1
1 2
1 3
1 4
1 5⎦

⎥
⎥
⎥
⎥
⎤

. 

 

4.1.5 CODE LISTING 

4.1.5.1 MPLUS 

TITLE: Multivariate LGC  

DATA: File is riesby.wide.dat; 

VARIABLE: 

  Names = HamD1-HamD6; 

MODEL: 

i BY HamD1-HamD6@1; 

s BY HamD1@0 HamD2@1 HamD3@2 HamD4@3 HamD5@4 HamD6@5; 

[HamD1-HamD6@0]; 

HamD1-HamD6 (theta); 

[i s]; 

i with s; 

 

4.1.5.2 XXM 

4.1.5.2.1 RESIDUAL COVARIANCE MATRIX 

For the pattern matrix of the residual covariances, we want to estimate the residual variances and we 
want to fix the covariances. Thus we have the following pattern matrix:  

Θ𝑝𝑎𝑡
1,1 =

⎣
⎢
⎢
⎢
⎢
⎡10 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎤
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Since, we want to fix all the covariance to 0, the corresponding values are 0 in the following value 
matrix: 

Θ𝑣𝑎𝑙
1,1 =

⎣
⎢
⎢
⎢
⎢
⎡1000

0 1000
0 0 1000
0 0 0 1000
0 0 0 0 1000
0 0 0 0 0 1000⎦

⎥
⎥
⎥
⎥
⎤

 

We want to set all the residual values to be equal. To do so, we use the label matrix and make all the 
variance the same name, such as “theta.”  In xxM when parameters have the same name in a label 
matrix, the parameters will be constrained be equal. The covariances are equal and equal 0, so zeros as 
labels will work just fine here.  

Θ𝑙𝑎𝑏
1,1 =

⎣
⎢
⎢
⎢
⎢
⎡𝑡ℎ𝑒𝑡𝑎0 𝑡ℎ𝑒𝑡𝑎

0 0 𝑡ℎ𝑒𝑡𝑎
0 0 0 𝑡ℎ𝑒𝑡𝑎
0 0 0 0 𝑡ℎ𝑒𝑡𝑎
0 0 0 0 0 𝑡ℎ𝑒𝑡𝑎⎦

⎥
⎥
⎥
⎥
⎤

 

 

The following code will specify the theta matrices:  

th_pat <-diag(1,6) 

th_val <-diag(1000,6) 

th_lab <- diag(0, 6) 

diag(th_lab) <- rep("theta",6) 

reisby.wide <- xxmWithinMatrix(reisby.wide,"subject","theta", th_pat, 
th_val, th_lab) 

 

 

4.1.5.2.2 LATENT MEANS 

We want to freely estimate the latent means, thus the alpha pattern matrix is as follows: 

𝛼𝛼𝑝𝑎𝑡1 = �11� 

4.1.5.2.3 LATENT FACTOR COVARIANCE MATRIX 
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We also want to freely estimate the variances and the covariance in psi matrix, thus the psi pattern 
matrix is as follows: 

Ψ𝑝𝑎𝑡
1,1 = �1

1 1
�  

4.1.5.2.4 LAMBDA MATRIX 

The pattern lambda matrix is 6 X 2 and is filled with all zeros, because we are fixing all the loading 
factors as depicted in the diagram.  The complete lambda pattern matrix is as follows: 

Λ𝑝𝑎𝑡
1,1 =

⎣
⎢
⎢
⎢
⎢
⎡
0 0
0 0
0 0
0 0
0 0
0 0⎦

⎥
⎥
⎥
⎥
⎤

 

The lambda matrix contains all one’s in the first column to connect the six observed variables with the 
initial status (𝜂0𝑖) variable. The second column connects the observed variables to the growth trend 
variable (𝜂1𝑖). The complete lambda value matrix is as follows:  

Λ𝑣𝑎𝑙
1,1 =

⎣
⎢
⎢
⎢
⎢
⎡
1 0
1 1
1 2
1 3
1 4
1 5⎦

⎥
⎥
⎥
⎥
⎤

 

4.1.5.2.5 COMPLETE XXM CODE 

#level-1 matrices 

th_pat <-diag(1,6) 

th_val <-diag(1000,6) 

th_lab <- diag(0, 6) 

diag(th_lab) <- rep("theta",6) 

 

ps_pat <- matrix(1,2,2) 

ps_val <- diag(c(10,1),2) 

al_pat <- matrix(1,2,1) 

al_val <- matrix(c(250, 10),2,1) 
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ly_pat <-matrix(0,6,2) 

one <- rep(1,6) 

week <- seq(from = 0, to = 5, by = 1) 

ly_val <-matrix(c(one, week),6,2) 

 

##xxmSubmodel(model, level, parents,  ys, xs, latent, data)  

reisby.wide <- xxmModel("subject")  

 

reisby.wide <- xxmSubmodel(model = reisby.wide,  

                     level = "subject",  

                     parents = ,  

                     ys = 
c("HamD1","HamD2","HamD3","HamD4","HamD5","HamD6"),  

                     xs = ,  

                     etas = c("Intercept", "Slope"),  

                     data = reisby.wide) 

#level 1 

reisby.wide <- xxmWithinMatrix(reisby.wide,"subject","theta", th_pat, 
th_val, th_lab) 

reisby.wide <- xxmWithinMatrix(reisby.wide,"subject","psi", ps_pat, 
ps_val) 

reisby.wide <- xxmWithinMatrix(reisby.wide,"subject","alpha", al_pat, 
al_val) 

reisby.wide <- xxmWithinMatrix(reisby.wide, "subject","lambda", 
ly_pat, ly_val) 

 

system.time(reisby.wide <- xxmRun(reisby.wide)) 

reisby.wide<- xxmFree(reisby.wide) 

4.1.5.3 RESULTS 
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Because constrained the residual variances to be equal, all the thetas will be the same.  

 

person

Reisby

1

1 1

1 1 1
1

0 11
2 3 4 5

1iHamD 2iHamD 3iHamD 4iHamD 5iHamD 6iHamD

iη0 iη1
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5 BIVARIATE CROSS-CLASSIFIED MODEL 

The previous example illustrated a research design in which a single outcome variable was measured 
from students who were simultaneously nested within primary and secondary schools, leading to a 
cross-classified dependency structure.    The current example is also a cross-classified model, but with 
two observed outcome variables at the lowest level.  This design allows us to examine the relationship 
between these variables at each level of the model.   

5.1 MOTIVATING EXAMPLE 

Our example draws on a common research paradigm in social and cognitive psychology known as the 
stimulus-sampling designs.  In these studies, participants (raters) respond to a series of randomly 
sampled stimuli (targets). Specifically, responses are simultaneously nested within raters and targets, 
leading to a cross-classified dependency structure.  Treating these sources of non-independence as 
random effects allows the results to generalize to the larger populations from which these stimuli were 
drawn (Judd, Westfall, & Kenny, 2012).  In the present example, we use data collected from a sample of 
243 undergraduate students who evaluated the symmetry (S) and physical attractiveness (PA) of male 
and female faces in photographs (Langner et al., 2010).  Our initial model features a decomposition of 
SYM and PA ratings into rater- and target-specific variance components and latent correlations between 
PA and SYM for each of these sources.  Response-specific residuals will also be allowed to correlate.   

Unlike the standard analytic approach which confounds these distinct sources of variability in photo 
ratings, the current approach answers precise research questions that are specific to each class of 
variance component.  Specifically, the correlation between rater variance components describes the 
extent to which individuals who evaluate all photographs as consistently more or less symmetrical, tend 
to also rate all photographs as more or less attractive.  Moreover, the correlation between target 
variance components expresses the degree to which target photographs that are evaluated by all raters 
as consistently more or less symmetrical, are also rated as more or less attractive.  Finally, the 
correlation between response-specific residuals reflects idiosyncratic associations between symmetry 
and attractiveness.   

5.2 BIVARIATE CROSS-CLASSIFIED RANDOM INTERCEPTS MODEL 

In this case, each rating is simultaneously nested within raters (participants) and targets (photographs).  
As a result, the symmetry and attractiveness rating is subject to three distinct sources of influence: (1) 
rater-effects, (2) target-effects, and (3) idiosyncratic effects, which are confounded with measurement 
error.  The following model makes the idea of two sources of systematic influence explicit.    

5.2.1 MLM NOTATION 

For a response 𝑖, provided by rater 𝑢 and evaluating target 𝑣, the level-1 equations are:  

𝑆𝑌𝑀𝑖(𝑢,𝑣) = 𝜈𝜈𝑆𝑌𝑀 + 1 × 𝜂𝑆𝑌𝑀,𝑢
𝑅 + 1 × 𝜂𝑆𝑌𝑀,𝑣

𝑇 + 𝑒𝑆𝑌𝑀,𝑖(𝑢,𝑣) 
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𝑃𝐴𝑖(𝑢,𝑣) = 𝜈𝜈𝑃𝐴 + 1 × 𝜂𝑃𝐴,𝑢
𝑅 + 1 × 𝜂𝑃𝐴,𝑣

𝑇 + 𝑒𝑃𝐴,𝑖(𝑢,𝑣) 

𝑒~𝑁(0,Θ) 

𝜂𝑅~𝑁(0,Ψ𝑅) 

𝜂𝑇~𝑁(0,Ψ𝑇) 

 𝜂𝑅 and 𝜂𝑇are the unobserved latent variables representing the effects of rater and target, respectively, 
on symmetry and attractiveness responses..   The actual effect for a given response 𝑖 depends on the 
specific combination of the rater and the target (𝑢 & 𝑣) involved in the evaluation.  It is assumed that 
the effects sources of influence are independent (uncorrelated).   

The model has eleven parameters: 

1. Grand-mean or the intercept for symmetry (𝜈𝜈𝑆𝑌𝑀) and attractiveness (𝜈𝜈𝑃𝐴).   
2. Response level residual variances (𝜃𝑆𝑌𝑀 & 𝜃𝑃𝐴)and covariance (𝜃𝑆𝑌𝑀,𝑃𝐴)  
3. Rater level latent factor variances (𝜓𝑆𝑌𝑀𝑅  & 𝜓𝑃𝐴𝑅 ) and covariance (𝜓𝑆𝑌𝑀,𝑃𝐴

𝑅 ) for symmetry and 
attractiveness. 

4. Target level latent factor variances (𝜓𝑆𝑌𝑀𝑇  &  𝜓𝑃𝐴𝑇 ), and covariance (𝜓𝑆𝑌𝑀,𝑃𝐴
𝑇 ) for symmetry and 

attractiveness. 

5.2.2 NL-SEM REPRESENTATION 

The above equations using superscripts R and T clarify the effects of raters and targets on multivariate 
responses. However, it is useful to think of these models in more general terms.  The general notation is 
useful in understanding more complex models with observed and latent variables at multiple levels.  For 
this reason, we will use numeric superscripts. 

The model has three levels: 

(1) Level 1: response 
(2) Level 2: rater 
(3) Level 3: target 

The above equation can be re-written using numeric superscripts to specify the level information as:    

𝑌𝑝𝑖1 = 𝜈𝜈𝑝1 + 1𝑖,𝑢
1,2 × 𝜂𝑝,𝑢

2 + 1𝑖,𝑣
1,3 × 𝜂𝑝,𝑣

3 + 𝑒𝑝,𝑖
1  

Here, we use superscript 1 for the dependent variable 𝑌𝑝 measured at the lowest level (response) and 
superscripts 2 and 3 for the corresponding random-intercepts for rater (2) and target (3) levels, 
respectively.  For two dependent variables, we can re-write the above equation as: 

𝑌1𝑖 1 = 𝜈𝜈11 + 1𝑖,𝑢
1,2 × 𝜂1,𝑢

2 + 1𝑖,𝑣
1,3 × 𝜂1,𝑣

3 + 𝑒1𝑖1  

𝑌2𝑖1 = 𝜈𝜈21 + 1𝑖,𝑢
1,2 × 𝜂2,𝑢

2 + 1𝑖,𝑣
1,3 × 𝜂2,𝑣

3 + 𝑒2𝑖 1  
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We could entirely the variable subscripts be rewriting the above equation as a matrix expression. 

𝑌𝑖1 = 𝜈𝜈1 + Λ𝑖,𝑢
1,2 ×  𝜂𝑢2 + Λ𝑖,𝑣

1,3 × 𝜂𝑣3 + 𝑒𝑖1 

We can now express distributional assumptions regarding random-effects and residuals as: 

𝑒1~𝑁(0,Θ1,1) 

𝜂2~𝑁(0,Ψ2,2) 

𝜂3~𝑁(0,Ψ3,3) 

5.2.3 PATH DIAGRAM 

The above model can be conceptualized as a three level xxM model shown in the following diagram.  In 
this case, the three levels are response, rater, and target.  The response level is nested simultaneously 
within rater and target levels.  For each level, there is a separate sub-model delineated by a rectangle.     

bivariate cross classified

PA

responserater

1
SYM

1

target

1

1

1

1

2,2
1,1ψ

1,1
2,2θ

2,2
2,2ψ

2,2
2,1ψ

3,3
1,1ψ

3,3
2,2ψ

1,1
1,1θ

1,1
2,1θ

3,3
2,1ψ

1
1ν

1
2ν

2
1η

2
2η

3
1η

3
2η

 

At the response level, we have two observed dependent variables and no latent variables.  The 
remaining two levels each have two latent variables representing rater and target effects for symmetry 
and attractiveness.  Each of these latent variables influences the response level outcome as indicated by 
the directional arrow.  Consistent with the above equations, the coefficient (factor-loading) linking each 
latent variable to the observed response is fixed to 1.0. 

5.2.4 XXM MODEL MATRICES 

The above model can be described more conveniently in matrix notation. As described earlier, we will 
use super-scripts to indicate level and subscripts to indicate variables.   Within-level matrices for each of 
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the three levels (response, rater, and target) are presented first, followed by across-level matrices 
connecting the rater (level-2) and target (level-3) levels with the response level (level-1). 

5.2.4.1 LEVEL-1 (RESPONSE): WITHIN MATRICES 

Level-1 is the response level. There are two parameter matrices: (1) theta (Θ): the residual covariance 
matrix and (2) nu (𝜈𝜈): the observed variable intercepts. 

5.2.4.1.1 LEVEL-1 RESIDUAL COVARIANCE MATRIX 

With two observed dependent variables SYM and PA at level-1, specification of the response level is 
rather straightforward.  Hence, the residual covariance or theta matrix is 2 × 2: 

Θ1,1 = �
𝜃1,1
1,1

𝜃2,1
1,1 𝜃2,2

1,1� 

Superscripts make it clear that we are referring to the level-1 covariance matrix. The two subscripts 
indicate SYM and PA. 

5.2.4.1.2 LEVEL-1 OBSERVED VARIABLE INTERCEPT 

Because the rater and target level effects are expressed in deviation terms, mean-structure will be 
modeled at the response level by estimating intercepts for SYM and PA, using a nu (𝜈𝜈) matrix. It is 
important to keep in mind that intercepts are fixed-effects or constants that are not tied to individual 
responses, raters, or targets.  Rather, the intercepts reflect the grand-mean of the dependent variables 
across all levels: 

𝜈𝜈1 = �
𝜈𝜈11

𝜈𝜈21
� 

where 𝜈𝜈11 represents the grand-mean of symmetry (SYM), and 𝜈𝜈21 reflects the average attractiveness (PA) 
rating across all responses. Note that the superscripts indicate that the intercepts are at level-1. 

5.2.4.2 LEVEL-2 (RATER): WITHIN MATRICES 

There are two latent variables at the rater level (𝜂𝑆𝑌𝑀𝑅  & 𝜂𝑃𝐴𝑅 ) with means of zero and a variance-
covariance structure described in the following psi (Ψ) matrix.  

5.2.4.2.1 LEVEL-2 RATER LATENT FACTOR COVARIANCE MATRIX 

The rater level latent covariance matrix is 2 x 2:   

Ψ2,2 = �
𝜓1,1
2,2

𝜓2,1
2,2 𝜓2,2

2,2� 
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𝜓1,1
2,2 is the variance of rater SYM, 𝜓2,2

2,2 is the variance of rater PA, and 𝜓2,1
2,2 is the covariance between 

rater SYM and PA. 

5.2.4.3 LEVEL-3 (TARGET): WITHIN MATRICES 

There are also two latent variables at the target level, (𝜂𝑆𝑌𝑀𝑇  &  𝜂𝑃𝐴𝑇 ) with means of zero and a variance-
covariance structure described in the following psi (Ψ) matrix. 

5.2.4.3.1 LEVEL-3 LATENT FACTOR COVARIANCE MATRIX 

The target level latent covariance matrix is 2 x 2:   

Ψ3,3 = �
𝜓1,1
3,3

𝜓2,1
3,3 𝜓2,2

3,3� 

𝜓1,1
3,3 is the variance of target SYM, 𝜓2,2

3,3 is the variance of target PA, and 𝜓2,1
3,3 is the covariance between 

target SYM and PA. 

Raters and photographs (targets) each have their own sub-model. We now need to connect latent 
variables for these levels with the corresponding observed variable at the response level.  In order to do 
so, we need two separate factor-loading matrices – one connecting the rater latent variables with the 
response outcomes and the second connecting the target level latent variables with the same response 
outcomes.  This is specified by two separate across-level factor-loading matrices. 

5.2.4.4  ACROSS-LEVEL MATRICES: LEVEL-2 (RATER) TO LEVEL-1 (RESPONSE) 

If you look closely, the equations and diagrams clearly indicate:  

(1) The latent variable 𝜂𝑆𝑌𝑀𝑅  in the rater level is measured by observed variable 𝑆𝑌𝑀. The 
corresponding coefficient is 1.0.  

(2) The latent variable 𝜂𝑆𝑌𝑀𝑅  is not measured by 𝑃𝐴. Hence, the corresponding coefficient is 
implicitly 0.0. For this reason, there is no path in the diagram from 𝜂𝑆𝑌𝑀𝑅  to 𝑃𝐴. 

(3) Similarly, the latent variable 𝜂𝑃𝐴𝑅  in the rater level is measured by observed variable 𝑃𝐴. The 
corresponding coefficient is 1.0. 

(4) The latent variable 𝜂𝑃𝐴𝑅  for rater is not measured by  𝑆𝑌𝑀. Hence, the corresponding coefficient 
is implicitly 0.0. 

We can succinctly represent this idea by specifying the value factor-loading matrix connecting the two 
rater latent variables (𝜂𝑆𝑌𝑀 

𝑅 & 𝜂𝑃𝐴𝑅 ) with the corresponding response variables (𝑆𝑌𝑀  & 𝑃𝐴) as follows: 

Λ𝑣𝑎𝑙
1,2 = �

𝜂𝑆𝑌𝑀𝑅 𝜂𝑃𝐴𝑅
𝑆𝑌𝑀
𝑃𝐴 �1.0 0.0

0.0 1.0�
� 
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The rows indicate the two dependent variables and the columns indicate the two latent independent 
variables. While the above matrix is sufficient for the current purpose, in general we prefer to use 
superscripts and subscripts to indicate levels and variables. 

𝜂12 𝜂22

Λ𝑣𝑎𝑙
1,2 =

𝑌11

𝑌21
�1.0 0.0
0.0 1.0�

 

Superscripts make it clear that the effect of first latent variable at level-2 (rater, SYM) on first observed 
variable at level-1 (response, SYM) is 1.0. Similarly, the effect of second latent variable at level-2 (rater, 
PA) on second observed variable at level-1 (response, PA) is 1.0. The remaining two effects are obviously 
zero. Notice that the factor loading matrix (Λ1,2) includes superscripts to indicate that this matrix defines 
measurement relationship across levels 1 and 2.   

In general, elements of across-level matrices have the following structure.   

𝜂12 𝜂22

Λ1,2 =
𝑌11

𝑌21
�
𝜆1,1
1,2 𝜆1,2

1,2

𝜆2,1
1,2 𝜆2,2

1,2�
 

Note that each element has superscripts indicating which two levels are being connected and subscripts 
indicating which two variables are being connected.  In this case, we are not estimating any factor-
loadings. As such the specification of rater level to the response level factor-loading matrix is: 

Λ1,2 = �1.0 0.0
0.0 1.0�. 

5.2.4.5 ACROSS-LEVEL MATRICES: LEVEL-3 (TARGET) TO LEVEL-1 (RESPONSE) 

Factor-loading matrix connecting target latent variables with response observed variables is identical to 
the corresponding rater to response matrix.  

Λ1,3 = �1.0 0.0
0.0 1.0�. 

It is now apparent that with multiple levels, we need explicit superscripts to clearly indicate which two 
levels are being connected. 

5.2.4.6 SUMMARY OF MODEL MATRICES 

The following table provides a complete summary of pattern matrices: 

 Matrix Pattern 
Level 1: Θ 

Θ1 = �
𝜃1,1
1,1

𝜃2,1
1,1 𝜃2,2

1,1� 
Θ1,1 = �1

1 1
� 
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Level 1: ν 
𝜈𝜈1 = �

𝜈𝜈11

𝜈𝜈21
� 𝜈𝜈1 = �11� 

 
Level 2: Ψ 

Ψ2,2 = �
𝜓1,1
2,2

𝜓2,1
2,2 𝜓2,2

2,2� 
Ψ2,2 = �1

1 1
� 

Level 3: Ψ 
Ψ3,3 = �

𝜓1,1
3,3

𝜓2,1
3,3 𝜓2,2

3,3� 

 

Ψ3,3 = �1
1 1

� 
 

Level 2 → Level 1: Λ 
Λ1,2 = �

𝜆1,1
1,2 𝜆1,2

1,2

𝜆2,1
1,2 𝜆2,2

1,2� 
Λ1,2 = �0 0

0 0�. 

Level 3 → Level 1: Λ 
Λ1,3 = �

𝜆1,1
1,3 𝜆1,2

1,3

𝜆2,1
1,3 𝜆2,2

1,3� 
Λ1,3 = �0 0

0 0� 

The important thing to note is that all parameters for the within-level matrices are freely estimated, 
whereas the two across-level factor-loading matrices have no free parameters.  

5.3 CODE LISTING 

5.3.1 SAS PROC MIXED 

Proc Mixed data = faces covtest; 

  CLASS rater target response SYM_PA; 

  MODEL: y = SYM PA / noint s; 

  RANDOM SYM PA / subject = rater type = un; 

  RANDOM SYM PA / subject = target type = un; 

  REPEATED SYM_PA / subject = response type = un r rcorr; 

RUN; 

Because SAS PROC MIXED is designed to fit univariate mixed-effects models, we must ‘trick’ the 
procedure into fitting a multivariate model.  This involves creating a SAS data file (faces.sas7bdat) 
containing a single outcome variable (y) containing both SYM and PA values for each response.  
Additionally, a variable denoting the outcome variable (SYM_PA) is added as the sole fixed predictor, 
which SAS converts into a dummy vector.  The RANDOM statements identify rater and target levels as 
two independent levels with independent random effects.   These statements estimate variance of 
respective rater and target levels random intercepts for each outcome variable.  The REPEATED 
statement allows response level residuals for SYM and PA to covary. 

5.3.2 XXM 

The following code closely follows the xxM model description presented earlier. 
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library(xxm) 

faces <- xxmModel(levels = c("response","rater","target")) 

faces <- xxmSubmodel(model = faces, level = "response", parents = 
c("rater","target"), ys = c("SYM", "PA"), xs =, etas =, data = 
response) 

faces<- xxmSubmodel(model = faces, level = "rater", parents = ,                   
ys =, xs =, etas = c("rater_SYM", "rater_PA"), data = rater) 

faces <- xxmSubmodel(model = faces, level = "target", parents = ,                      
ys = , xs =, etas = c("target_SYM", "target_PA"), data = target) 

 

resp_th_pat <- matrix(c(1,1,1,1),2,2) 

resp_th_val <- matrix(c(2,.0,.0,2),2,2) 

resp_nu_pat <- matrix(c(1,1),2,1) 

resp_nu_val <- matrix(c(5,5),2,1) 

faces <- xxmWithinMatrix(model = faces, level = "response", type = 
"theta",                    pattern = resp_th_pat, value = 
resp_th_val) 

faces <- xxmWithinMatrix(model = faces, level = "response", type = 
"nu",                     pattern = resp_nu_pat, value = resp_nu_val) 

 

rater_psi_pat <- matrix(c(1,1,1,1),2,2) 

rater_psi_val <- matrix(c(.5,.25,.25,.5),2,2) 

faces <- xxmWithinMatrix(model = faces, level = "rater", type = "psi",                    
pattern = rater_psi_pat, value = rater_psi_val) 

target_psi_pat <- matrix(c(1,1,1,1),2,2) 

target_psi_val <- matrix(c(.5,.25,.25,.5),2,2) 

faces <- xxmWithinMatrix(model = faces, level = "target", type = 
"psi",                     pattern = target_psi_pat, value = 
target_psi_val) 

rater_resp_la_pat <- matrix(c(0,0,0,0),2,2) 

rater_resp_la_val <- matrix(c(1,0,0,1),2,2) 

faces <- xxmBetweenMatrix(model = faces, parent = "rater", child = 
“response", type = "lambda", pattern = rater_resp_la_pat, value = 
rater_resp_la_val) 
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target_resp_la_pat <- matrix(c(0,0,0,0),2,2) 

target_resp_la_val <- matrix(c(1,0,0,1),2,2) 

faces <- xxmBetweenMatrix(model = faces, parent = "target", child = 
“response", type = "lambda", pattern = target_resp_la_pat, value = 
target_resp_la_val) 

faces <- xxmRun( faces ) 

5.4 RESULTS 

bivariate cross classified

PA

1.772

responserater

1.011

1
SYM

2.288

1.130

1

.462 .624

target

.327

.916

.456

1

1

15.207

14.267

2
1η

2
2η

3
1η

3
2η
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6 TWO LEVEL CONFIRMATORY FACTOR ANALYSIS 

We now illustrate a multilevel confirmatory factor analysis (CFA) model (see Mehta, 2013). 

6.1 MOTIVATING EXAMPLE 

Data from the present example were drawn from a large-scale study in which indicators of verbal ability 
were measured for 1,141 students nested within 163 teachers.  We will use xxM to fit unrestricted CFA 
models at the student and teacher levels in an effort to explain the common covariance among these 
indicators at each level. 

6.2 TWO-LEVEL CFA MODEL 

In this case, each indicator of reading ability varies across students and teachers, and performance on 
these indicators is correlated within each level.  Estimating a common latent factor at each level of 
analysis allows us to parsimoniously explain the common variance/covariance among the indicators.  

6.2.1 SCALAR REPRESENTATION 

For clarity, we present scalar equations. However, it will become apparent that the number of subscripts 
that we have to consider increases very rapidly. The matrix equation presented later is succinct and 
clear. 

6.2.1.1 STUDENT SUBMODEL (LEVEL-1) 

The measurement model for each indicator of reading ability at the student level can be presented as:  

𝑦𝑝𝑖1 = 𝜈𝜈𝑝1 + 𝜆𝑝,1
1,1 × 𝜂1𝑖1 + 𝑒𝑝𝑖1  

where, 𝑦𝑝𝑖𝑗 is 𝑝𝑡ℎ observed indicator for student 𝑖, nested within teacher 𝑗. The superscript 1 is for the 
student level.   

𝜂1𝑖1 ~𝑁�0,𝜓1,1
1,1 � 

𝑒𝑝𝑖1 ~𝑁�0,𝜃𝑝,𝑝
1,1� 

The student sub-model has the  following parameters: 

1. (𝑝 − 1)  factor-loadings (𝜆𝑝,1
1,1 ) with the first factor loading being fixed to 1.0 for scale 

identification. 
2. Residual variance for each of the 𝑝 observed indicators (𝜃𝑝,𝑝) 

3. Single latent variance (𝜓1,1
1,1).   

4. Measurement intercepts for each of the 𝑝 observed indicators (𝜈𝜈𝑝). 
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6.2.1.2 TEACHER SUBMODEL (LEVEL-2) AND ACROSS LEVELS 

The teacher level has a single latent variable with mean of zero and unknown residual variance (𝜓1,1
2,2).  

The superscript 2 is for the teacher level, and the generic teacher-level equation is nearly identical to the 
student equation: 

𝑦𝑝𝑖𝑗1 = 𝜆𝑝,1
1,2 × 𝜂1𝑗2  

where, 𝑦𝑝𝑖𝑗 is 𝑝𝑡ℎ observed indicator for student 𝑖, nested within teacher 𝑗.  It is important to note that 
the student level reading outcomes serve as indicators of the reading ability factor at the teacher level.  
As a result, the student level measurement intercepts and residual variances carry-over from the 
previous equation.  Hence, we need only a single teacher level reading ability latent variable: 

𝜂1𝑗2 ~𝑁�0,𝜓1,1
2,2� 

Because we have already specified the mean structure and residual variances for the observed 
indicators at the student level, only two ‘types’ of parameter remain: 

1. (𝑝 − 1) factor-loadings (𝜆𝑝,1
1,2 ) with the first factor-loading being fixed to 1.0 for scale 

identification. 
2. Single latent variance (𝜓1,1

2,2). 

6.2.2 XXM MODEL MATRICES   

With multivariate outcomes, the scalar representation that we have used until now becomes 
cumbersome.  The matrix equations are much easier to understand. For the current model, we can 
describe multivariate outcome at the student level with a single measurement model that defines latent 
variables at level-1 and at level-2. 

The measurement model for each indicator of reading ability at the student level can be presented as:  

𝑦𝑖1 = 𝜈𝜈1 + Λ𝑖,𝑖
1,1 × 𝜂𝑖1 + +Λ𝑖,𝑗

1,2 × 𝜂𝑗2 + 𝑒𝑖1 . 

6.2.2.1 STUDENT SUBMODEL (LEVEL-1) 

6.2.2.1.1 FACTOR-LOADING MATRIX (LAMBDA) 

Λpattern
1,1 = �

0
1
1
1

�, Λvalue
1,1 = �

1.0
1.1
0.9
0.8

�, Λlabel
1,1 =

⎣
⎢
⎢
⎢
⎢
⎡𝜆1,1
1,1

𝜆2,1
1,1

𝜆3,1
1,1

𝜆4,1
1,1⎦
⎥
⎥
⎥
⎥
⎤
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The first factor-loading is fixed to 1.0.  Hence, we need to fix the first parameter in the pattern matrix.  
The value at which it is being fixed is specified in the value matrix. In this case the first factor-loading is 
being fixed to a value of 1.0.    

6.2.2.1.2 OBSERVED RESIDUAL COVARIANCE MATRIX (THETA) 

Θpattern
1,1 = �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

� ,Θvalue
1,1 = �

1.1 0.0 0.0 0.0
0.0 2.1 0.0 0.0
0.0 0.0 1.3 0.0
0.0 0.0 0.0 1.5

� 

The residual covariance matrix is a diagonal matrix, meaning we are only estimating residual variances. 
Residual covariances are all fixed to 0.0.  Again we use a pattern and a value matrix to fix all off-diagonal 
elements to 0.0. 

6.2.2.1.3 LATENT COVARIANCE MATRIX (PSI) 

Ψpattern
1,1 = [1],Ψvalue

1,1 = [1.1]  

6.2.2.1.4 OBSERVED VARIABLEL INTERCEPTS (NU) 

𝜈𝜈pattern1 = �

1
1
1
1

�, 𝜈𝜈value1 = �

1.1
2.1
1.3
. 71

�. 

6.2.2.2 TEACHER SUBMODEL (LEVEL-2) 

6.2.2.2.1 FACTOR-LOADING MATRIX (LAMBDA) 

Λpattern
1,2 = �

0
1
1
1

�, Λvalue
1,2 = �

1.0
1.1
. 9
. 8

�, Λlabel
1,2 =

⎣
⎢
⎢
⎢
⎢
⎡𝜆1,1
1,2

𝜆2,1
1,2

𝜆3,1
1,2

𝜆4,1
1,2⎦
⎥
⎥
⎥
⎥
⎤

 

It is important to note that in the current specification Λlabel
1,1 ≠ Λlabel

1,2 , suggesting that the factor-
loadings at each level are to be uniquely estimated.  Modifying these matrices so that elements 
corresponding to common indicators share the same label (e.g., 𝜆2,1

1,1 , 𝜆2,1
1,2 → 𝜆2,1) places equality 

constraints on loadings to the same indicator at the student and teacher level. The next example 
illustrates this concept in greater detail. 

6.2.2.2.2 LATENT COVARIANCE MATRIX (PSI) 

Ψpattern
2,2 = [1],Ψvalue

2,2 = [0.05]  
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6.2.3 MODEL MATRICES SUMMARY 

The following table provides a complete summary of parameter matrices: 

 Matrix Pattern 
Level 1: Θ Θ1,1

=

⎣
⎢
⎢
⎢
⎢
⎡𝜃1,1

1,1

𝜃2,1
1,1 𝜃2,2

1,1

𝜃3,1
1,1 𝜃3,2

1,1 𝜃3,3
1,1

𝜃4,1
1,1 𝜃4,2

1,1 𝜃4,3
1,1 𝜃4,4

1,1⎦
⎥
⎥
⎥
⎥
⎤

 

 

Θ1,1 = �
1
0 1
0 0 1
0 0 0 1

� 

 

Level 1: ν 

𝜈𝜈1 =

⎣
⎢
⎢
⎢
⎡𝜈𝜈1
1

𝜈𝜈21

𝜈𝜈31

𝜈𝜈31⎦
⎥
⎥
⎥
⎤
 𝜈𝜈1 = �

1
1
1
1

� 

 
Level 1:  Λ 

Λ1,1 =

⎣
⎢
⎢
⎢
⎢
⎡𝜆1,1
1,1

𝜆2,1
1,1

𝜆3,1
1,1

𝜆4,1
1,1⎦
⎥
⎥
⎥
⎥
⎤

 Λ1,1 = �

0
1
1
1

� 

Level 1: Ψ Ψ1,1 = �𝜓1,1
1,1� Ψ1,1 = [1] 

Level 2 → Level 1: Λ 

Λ1,2 =

⎣
⎢
⎢
⎢
⎢
⎡𝜆1,1
1,2

𝜆2,1
1,2

𝜆3,1
1,2

𝜆4,1
1,2⎦
⎥
⎥
⎥
⎥
⎤

 
Λ1,2 = �

0
1
1
1

�. 

Level 2: Ψ Ψ2,2 = �𝜓1,1
2,2� Ψ2,2 = [1] 

6.2.4 PATH DIAGRAM 
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6.3 CODE LISTING 

6.3.1 MPLUS 

Mplus allows confirmatory factor analyses to be estimated for two level data. 

TITLE: MLCFA 

DATA: File is mlcfa.dat; 

VARIABLE: 

  Names = lce pce pve vae teacher; 

  Within = ; 

  Cluster = teacher; 

ANALYSIS: 

  TYPE = TWOLEVEL; 

MODEL: 

%WITHIN% 

Eta_stu BY lce@1 pce* pve* vae*; 

Eta_stu*; 

%BETWEEN% 

Eta_teach BY lce@1 pce* pve* vae*; 
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Eta_teach*; 

[lce pce pve vae]; 

Although the specification described in the earlier equations models mean structure at the student 
level, Mplus only allows means to be modeled at the between level.  Regardless, the model-implied 
mean structure is identical. 

6.3.2 XXM 

library(xxm) 

data(mlcfa.xxm) 

#Student: factor-loading matrix  

ly11_pat <- matrix(c(0,1,1,1),4,1) 

ly11_val <- matrix(c(1,1.1,.9,.8),4,1)  

ly11_lab <- matrix(c("l1y1","l1y2","l1y3", "l1y4"),4,1)  

#Student: factor-covariance matrix  

ps1_pat <- matrix(1,1,1) 

ps1_val <- matrix(.1,1,1) 

#Student: observed residual-covariance matrix    

th1_pat <- diag(1,4) 

th1_val <- diag(c(2.68,2.98,3.26,1.57),4) 

#Student: "grand-means" NU  

nu1_pat <- matrix(1,4,1) 

nu1_val <- matrix(c(46.0, 46.99, 46.41, 47.97),4,1) 

#Teacher model matrices  

#Teacher: factor-covariance matrix 

ps2_pat <- matrix(1,1,1) 

ps2_val <- matrix(.1,1,1) 

#Teacher -> Student factor-loading matrix   

ly12_pat <- matrix(c(0,1,1,1),4,1) 

ly12_val <- matrix(c(1,1.1,.9,.8),4,1)  
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ly12_lab <- matrix(c("l12y1","l12y2","l12y3", "l12y4"),4,1)  

mlcfa <- xxmModel(levels = c("student", "teacher")) 

### Submodel: Student 

mlcfa <- xxmSubmodel(model = mlcfa, level = "student", parents = 
c("teacher"), ys = c("LCE", "PCE", "PVE", "VAE"), xs = ,etas = 
c("Eta_y_Stu"), data = mlcfa.student) 

### Submodel: Teacher 

mlcfa <- xxmSubmodel(model = mlcfa, level = "teacher", parents = , ys 
= , xs = , etas = c("Eta_y_Tea"), data = mlcfa.teacher) 

## Student within matrices (lambda, psi, theta and nu) 

mlcfa <- xxmWithinMatrix(model = mlcfa, level = "student", "lambda", 
pattern = ly11_pat, value = ly11_val,) 

mlcfa <- xxmWithinMatrix(model = mlcfa, level = "student", "psi", 
pattern = ps1_pat, value = ps1_val,) 

mlcfa <- xxmWithinMatrix(model = mlcfa, level = "student", "theta", 
pattern = th1_pat, value = th1_val,) 

mlcfa <- xxmWithinMatrix(model = mlcfa, level = "student", "nu", 
pattern = nu1_pat, value = nu1_val,)  

mlcfa <- xxmWithinMatrix(model = mlcfa, level = "teacher", type = 
"psi", pattern = ps2_pat, value = ps2_val,) 

## Teacher->Student lambda matrix  

mlcfa <- xxmBetweenMatrix(model = mlcfa, parent = "teacher", child = 
"student", type = "lambda", pattern = ly12_pat, value = ly12_val,) 

mlcfa <- xxmRun(mlcfa) 

mlcfa <- xxmCI(mlcfa) 

summary <- xxmSummary(mlcfa) 

summary 

mlcfa <- xxmFree(mlcfa) 

 

6.4 RESULTS 
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1
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1.379

LCE
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.556
.884 1.098

.763

.565

.646
1.2241.169
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Mean structure is not illustrated in this diagram.  The student 𝜈𝜈 matrix was estimated as: 

𝜈𝜈1 = �

𝜈𝜈𝐿𝐶𝐸
𝜈𝜈𝑃𝐶𝐸
𝜈𝜈𝑃𝑉𝐸
𝜈𝜈𝑉𝐴𝐸

� = �

46.073
47.057
46.477
48.006

�.   
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7 TWO LEVEL CONFIRMATORY FACTOR ANALYSIS WITH A RANDOM SLOPE 

The present example combines aspects of the models in chapter 3 (random slopes model) and chapter 7 
(two-level confirmatory factor analysis).   

7.1 MOTIVATING EXAMPLE  

Data were simulated for a population model with five observed variables at level-1, four of which serve 
as indicators for latent factors at levels 1 and 2.  The level-1 latent construct is regressed on the 
remaining observed variable and this coefficient is allowed to vary randomly across level-2 units (i.e. 
random slope). 

7.2 CONDITIONAL TWO-LEVEL CFA WITH A RANDOM SLOPE  

As in the previous example, each observed indicator (𝑦1 − 𝑦4) varies across levels 1 and 2, and these 
indicators are correlated within each level.  Estimating a common latent factor at each level of analysis 
allows us to parsimoniously explain the common variance/covariance among the indicators.  Moreover, 
the latent factor at level-1 (𝜂11) is regressed on the exogenous observed predictor (𝑥1).  This effect varies 
randomly at level-2, leading to two latent variables at level-2, corresponding to the correlated intercept 
(𝜂12) and slope (𝜂22) factors. 

7.2.1 SCALAR REPRESENTATION 

7.2.1.1 LEVEL-1 MODEL 

The measurement model for each level-1 indicator can be presented as:  

𝑦𝑝𝑖1 = 𝜈𝜈𝑝1 + 𝜆𝑝,1
1,1 × 𝜂1𝑖1 + 𝑒𝑝𝑖1  

where, 𝑦𝑝𝑖 is 𝑝𝑡ℎ observed indicator for observation 𝑖.   

𝜂1𝑖1 = 𝛽1,1
1,2 × 𝜂1𝑗2 + 𝛽1,2

1,2 × 𝜂2𝑗2 + 𝜉1𝑖1  

𝜉1𝑖1 ~𝑁�0,𝜓1,1
1,1� 

𝑒𝑖1~𝑁(0,Θ1,1) 

The level 1 model hypothesizes following parameters: 

1. (𝑝 − 1) factor loadings (𝜆𝑝,1
1,1 ) .  The first factor-loading is fixed to 1.0 for scale identification. 

2. Residual variance for each of the 𝑝 observed indicators (𝜃𝑝,𝑝
1,1). 

3. Latent-on-Latent regression coefficients (𝛽1,1
1,2 & 𝛽1,2

1,2) linking the level-2 random intercept (𝜂1𝑗2 ) 
and slope (𝜂2𝑗2 ) to the level-1 latent factor (𝜂1𝑖𝑗1 ). 
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4. A single latent residual variance (𝜓1,1
1,1).  Note that 𝜂1𝑖𝑗1  is influenced by 𝜂1𝑗2  and  𝜂2𝑗2  at level 2. 

5. Measurement intercepts for each of the 𝑝 observed indicators (𝜈𝜈𝑝1). 

7.2.1.2 LEVEL-2 MODEL 

The teacher level has a two latent variables corresponding to the random intercept (𝜂12) and slope (𝜂22): 

𝜂2~𝑁(𝛼𝛼2,Ψ2,2) 

7.2.2 XXM MODEL MATRICES   

Again, matrix equations for generic observations within each level are succinct and clear. For this model, 
there is a single measurement model, at level -1. In addition, there is an across-level regression involving 
levels 1 and 2. These two sets of equations can be succinctly described by the following two equations: 

𝑦𝑖1 = 𝜈𝜈1 + Λ𝑖,𝑖
1,1 × 𝜂𝑖1 + 𝑒𝑖1 

𝜂𝑖1 = 𝐵𝑖,𝑗
1,2 × 𝜂𝑗2 + 𝜉𝑖1 

The within and across-level matrices in the above two equations as well as the covariances among the 
residuals is presented next.  

7.2.2.1 LEVEL-1 

7.2.2.1.1 FACTOR-LOADING MATRIX (LAMBDA) 

Λpattern
1,1 = �

0
1
1
1

�, 

 Λvalue
1,1 = �

1.0
1.1
0.9
0.8

�. 

First factor loading is fixed to 1.0.  Hence, we need to fix the first parameter in the pattern matrix.  The 
value at which it is being fixed to is specified in the value matrix. In this case the first factor-loading is 
being fixed to a value of 1.0.    

7.2.2.1.2 OBSERVED RESIDUAL COVARIANCE MATRIX (THETA) 

Θpattern
1,1 = �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�,  
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Θvalue
1,1 = �

1.1 0.0 0.0 0.0
0.0 2.1 0.0 0.0
0.0 0.0 1.3 0.0
0.0 0.0 0.0 1.5

� 

Residual covariance matrix is a diagonal matrix, meaning we are only estimating residual variances. 
Residual covariances are all fixed to 0.  Again we use a pattern and a value matrix to “fix” all off-diagonal 
elements to 0.0. 

7.2.2.1.3 LATENT RESIDUAL COVARIANCE MATRIX (PSI) 

Ψpattern
1,1 = [1], 

Ψvalue
1,1 = [1.1]  

7.2.2.1.4 OBSERVED VARIABLE INTERCEPTS (NU) 

𝜈𝜈pattern1 = �

1
1
1
1

�, 

 𝜈𝜈value1 = �

1.1
2.1
1.3
0.7

�. 

7.2.2.1.5 LATENT ON LATENT REGRESSION COEFFICIENT MATRIX (BETA) 

Β𝑝𝑎𝑡𝑡𝑒𝑟𝑛
1,2 = [0 1],  

 Β𝑣𝑎𝑙𝑢𝑒
1,2 = [1.0 0.0] 

The level-1 latent variable is regressed on the intercept and slope factors at level-2.  Estimating a 
random slope for the level-1 predictor 𝑋 requires that we specify a label matrix Β𝑙𝑎𝑏𝑒𝑙

1,2  that tells xxM to 
use subject-specific values for the regression of 𝜂11 on 𝑋. 

Β𝑙𝑎𝑏𝑒𝑙
1,2 = ["𝑑𝑜𝑔" "𝑙1.𝑋"] 

The first element of the label matrix (1, 1) corresponds to the regression of 𝜂11 on 𝜂12, which identifies 
the level-1 random intercept for the latent factor, and the second element (1, 2) corresponds to the 
regression of 𝜂11 on 𝜂22, which identifies the random slope of 𝜂11 on 𝑋.  The label provided in the first 
element is arbitrary, and could have just as well been fido, cat, or any other character string.  In 
contrast, the label provided for the second element (corresponding to the random slope) is not 
arbitrary, as it must indicate the name of the lower-level predictor dataset and variable in the format: 
datasetName.variableName.  The presence of a period ( . ) in the label matrix causes xxM to search the 
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specified dataset for the predictor variable and insert observation-specific values for the factor-loading.  
This specification identifies the random slope factor 𝜂22, which allows the regression of 𝜂11 on 𝑋 to vary 
across level-2 subjects.  In the current example, the value 𝛽1,2

1,2 = "𝑙1.𝑋" tells xxM to estimate a random 
slope for variable 𝑋 found in dataset 𝑙1.  

7.2.2.2 LEVEL-2 

7.2.2.2.1 LATENT COVARIANCE MATRIX (PSI) 

Ψpattern
2,2 = �1

1 1
�, 

Ψvalue
2,2 = �0.1

0.0 0.1
�  

There are only latent variables at level-2, corresponding to the intercept and slope factors. 

7.2.2.2.2 LATENT MEAN MATRIX 

αpattern2 = �01� 

 αvalue2 = �0.0
0.5� 

Mean structure for the random intercept is modeled at level-1, therefore the level-2 intercept for level-1 
latent variable (𝛼𝛼12) is not identified and must be fixed to 0.0.  𝛼𝛼22 represents the mean of the slope 
factor, or the fixed regression coefficient for 𝑋. 

7.2.3 MODEL MATRICES SUMMARY 

The following table provides a complete summary of parameter matrices: 

 Matrix Pattern 
Level 1: Θ Θ1,1

=

⎣
⎢
⎢
⎢
⎢
⎡𝜃1,1

1,1

𝜃2,1
1,1 𝜃2,2

1,1

𝜃3,1
1,1 𝜃3,2

1,1 𝜃3,3
1,1

𝜃4,1
1,1 𝜃4,2

1,1 𝜃4,3
1,1 𝜃4,4

1,1⎦
⎥
⎥
⎥
⎥
⎤

 

 

Θ1,1 = �
1
0 1
0 0 1
0 0 0 1

� 

 

Level 1: ν 

𝜈𝜈1 =

⎣
⎢
⎢
⎢
⎡𝜈𝜈1
1

𝜈𝜈21

𝜈𝜈31

𝜈𝜈41⎦
⎥
⎥
⎥
⎤
 𝜈𝜈1 = �

1
1
1
1

� 
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Level 1:  Λ 

Λ1,1 =

⎣
⎢
⎢
⎢
⎢
⎡𝜆1,1
1,1

𝜆2,1
1,1

𝜆3,1
1,1

𝜆4,1
1,1⎦
⎥
⎥
⎥
⎥
⎤

 Λ1,1 = �

0
1
1
1

� 

Level 1: Ψ Ψ1,1 = �𝜓1,1
1,1� Ψ1,1 = [1] 

Level 2 → Level 1: Β Β1,2 = �𝛽1,1
1,2 𝛽1,2

1,2� Β1,2 = [1 1] 
Level 2: Ψ 

Ψ2,2 = �
𝜓1,1
2,2

𝜓2,1
2,2 𝜓2,2

2,2� 
Ψ2,2 = �1

1 1
� 

Level 2: α  
α2 = �

𝛼𝛼12

𝛼𝛼22
� α2 = �01� 

7.2.4 PATH DIAGRAM 

l1

y1 y2 y3
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y4 
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1

1
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1 1 1 1
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2
2η

1
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2,2
2,1ψ

2,2
1,1ψ 2,2

2,2ψ

1,2
1,1ψ

1,1
2,1λ 1,1

3,1λ
1,1
4,1λ

1,1
1,1θ 1,1

2,2θ
1,1
3,3θ

1,1
4,4θ

2
2α

1
1ν 1

2ν
1
3ν 1

4ν

 

7.3 CODE LISTING 

7.3.1 XXM 
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library(xxm)  

data(lranslp.xxm)  

#l1: Factor-Loading Matrix 

ly1_pat <- matrix(c(0,1,1,1),4,1) 

ly1_val <-  matrix(c(1,1,1,1),4,1)  

#l1:latent variable-covariance matrix 

ps1_pat <- matrix(1,1,1) 

ps1_val <- matrix(1,1,1) 

#l1:observed residual variable-covariance matrix 

th1_pat <- matrix(c(1,0,0,0, 

                    0,1,0,0, 

                    0,0,1,0, 

                    0,0,0,1),4,4,byrow=TRUE) 

th1_val <- matrix(c(1,0,0,0, 

                    0,1,0,0, 

                    0,0,1,0, 

                    0,0,0,1),4,4,byrow=TRUE) 

#l1: observed variable intercepts 

nu1_pat <- matrix(c(1,1,1,1),4,1) 

nu1_val <- matrix(c(.9,.7,.7,.6),4,1) 

#l2: latent variable covariance matrix 

ps2_pat <- matrix(1,2,2) 

ps2_val <- matrix(c(.2,.01,.01,.2),2,2) 

#l2: intercepts for level 2 slope variables 

al2_pat <- matrix(c(0,1),2,1) 

al2_val <- matrix(c(0,.2),2,1) 

#l2 -> l1 factor loading matrix 

be12_pat <- matrix(c(0,0),1,2) 
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be12_val <- matrix(c(1,0),1,2) 

be12_label  <- matrix(c("one","l1.x"), 1, 2) 

lranslp <- xxmModel(levels = c("l1","l2")) 

### Submodel: l1 

lranslp <- xxmSubmodel(model = lranslp, level = "l1", parents = "l2", 
ys = c("y1","y2","y3","y4"), xs = "x", etas = "fw", data = l1) 

### Submodel: l2 

lranslp <- xxmSubmodel(model = lranslp, level = "l2", parents = , ys = 
, xs =, etas = c("int","slp"), data = l2)  

#l1 within matrices (lambda, psi, theta) 

lranslp <- xxmWithinMatrix(model = lranslp, level = "l1", type = 
"lambda", pattern = ly1_pat, value = ly1_val) 

lranslp <- xxmWithinMatrix(model = lranslp, level = "l1", type = 
"psi", pattern = ps1_pat, value = ps1_val) 

lranslp <- xxmWithinMatrix(model = lranslp, level = "l1", type = 
"theta", pattern = th1_pat, value = th1_val) 

lranslp <- xxmWithinMatrix(model = lranslp, level = "l1", type = "nu", 
pattern = nu1_pat, val = nu1_val) 

#l2 within matrices (psi, alpha) 

lranslp <- xxmWithinMatrix(model = lranslp, level = "l2", type = 
"psi", pattern = ps2_pat, value = ps2_val) 

lranslp <- xxmWithinMatrix(model = lranslp,level = "l2", type = 
"alpha", pattern = al2_pat, value = al2_val)   

##l2->l1 loading matrix (beta) 

lranslp <- xxmBetweenMatrix(model = lranslp, parent = "l2", child = 
"l1", type = "beta", pattern = be12_pat, value = be12_val, label 
=be12_label) 

lranslp <- xxmRun(lranslp) 

lranslp <- xxmCI(lranslp) 

summary <- xxmSummary(lranslp) 

summary 

lranslp <- xxmFree(lranslp) 
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7.4 RESULTS 
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8 THREE LEVEL HIERARCHICAL MODEL WITH OBSERVED AND LATENT VARIABLES AT 
MULTIPLE LEVELS 

We now consider a general xxM model for three level data with observed and latent variables at 
multiple levels.     

8.1 MOTIVATING EXAMPLE 

We may have multiple indicators of student reading achievement, teacher quality, and school resources.  
In this case, students are nested within teachers and teachers are nested within schools.  We are 
interested in examining the effects of latent teacher quality and school resources on latent student 
achievement.   

In this case, we have four observed indicators of student achievement at level-1, no observed variables 
at the teacher level, and three measures of school resources at level-3. 

8.2 THREE LEVEL RANDOM INTERCEPTS MODEL WITH LATENT REGRESSION 

Very simply, these models are complex.  It is easier to visualize these models than describe them in 
terms of equations or matrices.  One thing to keep in mind that xxM is intended to be flexible so as to 
allow a model to be specified in the most ‘natural’ fashion.  The following model can be specified in 
several different equivalent ways.  The simplest expression of the model is presented here.   

8.2.1 SCALAR REPRESENTATION 

8.2.1.1 STUDENT SUBMODEL (LEVEL-1) 

The measurement model for the student achievement can be presented as:  

𝑦𝑝𝑖 1 = 𝜈𝜈𝑝1 + 𝜆𝑝,1
1,1 × 𝜂1𝑖1 + 𝑒𝑝𝑖1  

where, 𝑦𝑝𝑖 is 𝑝𝑡ℎ observed indicator for student 𝑖, nested within teacher 𝑗 . The superscript 1 is for the 
student level. Conditional on level 2 teacher latent variable, the residual of level-1 latent variable is 
distributed normally: 

𝜂1𝑖1  | 𝜂1𝑗2  ~ 𝑁�0,𝜓1,1
1,1� 

𝑒𝑝𝑖 1 ~𝑁�0,𝜃𝑝,𝑝
1,1� 

The student model hypothesizes the following parameters: 

3. (𝑝 − 1) factor loadings (𝜆𝑝,1
1,1 ) with the first factor loading being fixed to 1.0 for scale 

identification. 
4. Residual variance for each of the 𝑝 observed indicators(𝜃𝑝,𝑝

1,1) 
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5. Single latent residual variance (𝜓1,1
1,1).  Note: The student level latent variable is regressed on 

teacher level latent factor.  As a result, (𝜓1,1
1,1) is the conditional or residual variance.   This is 

discussed later. 
6. Measurement intercepts for each of the 𝑝 observed indicators (𝜈𝜈𝑝1). 

8.2.1.2 TEACHER SUBMODEL (LEVEL-2) 

The teacher level has a single latent variable with zero mean and unknown residual variance (𝜓1,1
2,2).  The 

superscript 2 is for the teacher level. Conditional on level 3 school latent variable, the residual of level-2 
or teacher random-effect is distributed normally: 

𝜂1,𝑗 
2  | 𝜂1,𝑘

3  ~ 𝑁�0,𝜓1,1
2,2� 

8.2.1.3 SCHOOL SUBMODEL (LEVEL-3) 

The school level has two latent variables each with a mean of zero and unknown variances.   

The second school level latent variable is the school-resource factor measured by three school level 
indicators. School level measurement model for the school-resource factor is: 

𝑦𝑝𝑘3 = 𝜈𝜈𝑝3 + 𝜆𝑝,2
3,3 × 𝜂2,𝑘

3 + 𝑒𝑝𝑘3  

𝜂2,𝑘
3 ~𝑁�0,𝜓2,2

3,3� 

𝑒𝑝𝑘3 ~𝑁�0,𝜃𝑝,𝑝
3,3� 

At the school level the first latent variable (school level random-intercept of student outcome) is 
regressed on school level latent resource factor: 

𝜂1𝑘3 = 𝛽1,2
3,3 ∗ 𝜂2𝑘3 + 𝜉𝑘3  

𝜉𝑘3~𝑁�0,𝜓1,1
3,3� 

The structural model states that school level variability in student achievement is predicted by school 
resources. So far, our description has been limited to within-level models only.  Latent variables 
representing random-intercepts for student achievement at the teacher and school levels were 
presented, but these have not yet been defined.  Clearly, we need to ‘link’ the latent student 
achievement factor (𝜂1𝑖1 ) with the corresponding teacher level intercept (𝜂1𝑗2 ).  Similarly, we need to 
connect the school level intercept of student achievement to the student level achievement factor.  
There are many ways of specifying such links.  Here we use a mediated effect approach.  The effect of 
the school level intercept for student achievement on student level achievement is mediated by the 
teacher effect.  In other words, we are envisioning regression among latent variables across levels. 
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8.2.1.4 TEACHER TO STUDENT EFFECTS 

𝜂1𝑖1 = 𝛽1,1
1,2 ∗ 𝜂1𝑗2 + 𝜉1,𝑖

1   

𝜉1,𝑖
1 ~𝑁�0,𝜓1,1

1,1� 

Note:  

1. The dependent variable is a level-1 latent variable (student achievement). The independent 
variable is a level-2 latent variable (teacher intercept of latent student achievement). This is 
reflected in the respective superscripts.  

2. The superscript for the regression coefficient (𝛽1,1
1,2) indicates that the dependent variable is a 

level-1 variable and the independent variable is a level-2 variable. 
3. The subscript for the regression coefficient is (1,1) meaning the first latent variable at level-1 is 

being regressed on the first latent variable at level-2.  With single latent variables at both levels, 
this seems like overkill. However, with multiple variables, superscripts and subscripts become a 
necessary evil. 

4. We return to the level-1 variance for the student achievement factor (𝜓1,1
1,1).  This was 

incompletely specified in the student submodel.   

8.2.1.5 SCHOOL TO TEACHER EFFECTS 

𝜂1𝑗 
2 = 𝛽1,1

2,3 × 𝜂1𝑘3 + 𝜉1,𝑗 
2   

𝜉1,𝑗
2 ~𝑁�0,𝜓1,1

2,2� 

Note:  

1. The dependent variable is a level-2 latent variable (teacher intercept of latent student 
achievement). The independent variable is a level-3 latent variable (school intercept of latent 
student achievement). This is reflected in the respective superscripts.  

2. The superscript for the regression coefficient (𝛽1,1
2,3) indicates that the dependent variable is a 

level-2 variable and the independent variable is a level-3 variable. 
3. The subscript for the regression coefficient is (1, 1) meaning the first latent variable at level-2 is 

being regressed on the first latent variable at level-3.  In this case, we have two latent variables 
at level-3.  Hence, we could in principle have two latent regressions coefficients (𝛽1,1

2,3 & 𝛽1,2
2,3). 

Subscripts make it clear which latent variables are involved. 
4. We return to the level-2 variance for the teacher achievement intercept (𝜓1,1

2,2).  This was 
incompletely specified in the teacher sub-model.   

8.2.2 XXM MODEL MATRICES 
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For the current model, two levels include measurement models, (a) student, and (b) teacher. There are 
two across-level regressions: (a) Teacher to Student, and (b) School to Teacher. The following four 
matrix equations, succinctly represents all of these within- and across-levels effects.  

8.2.2.1 STUDENT LEVEL MEASUREMENT EQUATION 

𝑦𝑖1 = 𝜈𝜈1 + Λ𝑖,𝑖
1,1 × 𝜂𝑖1 + 𝑒𝑖1 

8.2.2.1 SCHOOL LEVEL MEASUREMENT EQUATION 

𝑦𝑖3 = 𝜈𝜈3 + Λ𝑖,𝑖
3,3 × 𝜂𝑖3 + 𝑒𝑖3 

8.2.2.1 TEACHER -> STUDENT EQUATION 

𝜂𝑖1 = 𝐵𝑖,𝑗
1,2 × 𝜂𝑗2 + 𝜉𝑖1 

8.2.2.1 SCHOOL-> TEACHER EQUATION 

𝜂𝑖2 = 𝐵𝑖,𝑗
2,3 × 𝜂𝑗3 + 𝜉𝑖2 

The matrices used in these equations and the covariances among the residuals at each level are now 
described to complete the model specification. 

8.2.2.2 STUDENT SUBMODEL (LEVEL-1) 

8.2.2.2.1 FACTOR-LOADING MATRIX (LAMBDA) 

Λpattern
1,1 = �

0
1
1
1

�, Λvalue
1,1 = �

1.0
1.1
0.9
0.8

�,  

The first factor-loading is fixed to 1.0.  Hence, we need to fix the first parameter in the pattern matrix.  
The actual value at which the parameter is to be fixed is specified in the value matrix. In this case the 
first factor-loading is being fixed to a value of 1.0. 

8.2.2.2.2 OBSERVED RESIDUAL COVARIANCE MATRIX (THETA) 

Θpattern
1,1 = �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

� ,Θvalue
1,1 = �

1.1 0 0 0
0 2.1 0 0
0 0 1.3 0
0 0 0 1.5

� 
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Residual covariance matrix is a diagonal matrix, meaning we are only estimating residual variances. 
Residual covariances are all fixed to 0.0.  Again we use a pattern and a value matrix to fix all off-diagonal 
elements to 0.0. 

8.2.2.2.3 LATENT (RESIDUAL) COVARIANCE MATRIX (PSI) 

Ψpattern
1,1 = [1],Ψvalue

1,1 = [1.1]  

8.2.2.2.4 OBSERVED VARIABLE INTERCEPTS (NU) 

νpattern1 = �

1
1
1
1

�, νvalue1 = �

1.1
2.1
1.3

0.71

�. 

8.2.2.3 TEACHER SUBMODEL (LEVEL-2) 

8.2.2.3.1 LATENT (RESIDUAL) COVARIANCE MATRIX (PSI) 

Ψpattern
2,2 = [1],Ψvalue

2,2 = [0.05]  

8.2.2.4 SCHOOL SUBMODEL (LEVEL-3) 

8.2.2.4.1 FACTOR-LOADING MATRIX (LAMBDA) 

Λpattern
3,3 = �

0 0
0 1
0 1

�, Λvalue
3,3 = �

0.0 1.0
0.0 1.1
0.0 0.9

� 

 There are three observed and two latent variables at level-3. Hence the factor-loading matrix is 3 × 2. 
The first latent variable is the school level random-intercept of the teacher-level random-intercept of 
student achievement.  Clearly, the first latent variable cannot have school-level latent indicators. Hence, 
the first column is zero in both pattern and value matrices. The second latent variable is the school-
resource factor measured by all three level-3 indicators.  As always, the first factor loading is fixed to 1.0 
to identify the latent measurement scale. 

8.2.2.4.2 OBSERVED RESIDUAL COVARIANCE MATRIX (THETA) 

Θpattern
3,3 = �

1 0 0
0 1 0
0 0 1

� ,Θvalue
3,3 = �

1.1 0.0 0.0
0.0 2.1 0.0
0.0 0.0 1.3

� 

8.2.2.4.3 OBSERVED VARIABLE INTERCEPTS (NU) 
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𝜈𝜈pattern3 = �
1
1
1
�, 𝜈𝜈value

3 = �
1.1
2.1
0.7

�. 

8.2.2.4.4 LATENT VARIABLE REGRESSION MATRIX (BETA) 

Β𝑝𝑎𝑡𝑡𝑒𝑟𝑛
3,3 = �0 1

0 0� ,Β𝑣𝑎𝑙𝑢𝑒
3,3 = �0.0 0.4

0.0 0.0�. 

There are two latent variables at level-3 and the first latent variable is regressed on the second.  Hence, 
element is freely estimated. The other three elements are fixed to zero. 

8.2.2.4.5 LATENT VARIABLE (RESIDUAL) COVARIANCE MATRIX (PSI) 

Ψ𝑝𝑎𝑡𝑡𝑒𝑟𝑛
3,3 = �1 0

0 1� ,Ψ𝑣𝑎𝑙𝑢𝑒
3,3 = �0.3 0.0

0.0 0.7�. 

 Like the theta matrix, the psi matrix is a diagonal matrix.  𝜓1,1
3,3 is the variance of the first latent variable 

(student achievement random intercept) and represents the variance in the intercept factor unexplained 
by the school-resource factor.  𝜓1,1

3,3 is the unconditional variance of the school-resource factor.  

8.2.2.5 TEACHER TO STUDENT EFFECTS 

8.2.2.5.1 LATENT VARIABLE REGRESSION MATRIX (BETA) 

Β𝑝𝑎𝑡𝑡𝑒𝑟𝑛
1,2 = [0],Β𝑣𝑎𝑙𝑢𝑒

1,2 = [1.0] 

This matrix links the teacher latent random-intercept variable with the student latent achievement 
variable.  As indicated earlier, the value is fixed to 1.0. Note that the superscript has two elements, the 
first element refers to the lower level (student) and the second element refers to the higher level 
(teacher).  This is always true for all linking matrices. 

8.2.2.6 SCHOOL TO TEACHEREFFECTS 

8.2.2.6.1 LATENT VARIABLE REGRESSION MATRIX (BETA) 

Β𝑝𝑎𝑡𝑡𝑒𝑟𝑛
2,3 = [0 0],Β𝑣𝑎𝑙𝑢𝑒

2,3 = [1.0 0.0] 

This matrix links the school latent random-intercept of student achievement with the teacher latent 
intercept of achievement variable.  There is a single latent variable at level-2 (teacher random-intercept 
of student achievement), but two latent variables at level-3 (school random-intercept of student 
achievement and school-resources).   Only the school random-intercept of student achievement 
influences the teacher random intercept of student achievement.  Hence, the first element is fixed to 1.0 
and second element is fixed to 0.0. 
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8.2.3 MODEL MATRICES SUMMARY 

The following table provides a complete summary of parameter matrices: 

 Matrix Pattern 
Level 1: Θ 

Θ1,1 = �
𝜃1,1
1,1

𝜃2,1
1,1 𝜃22

1,1

𝜃3,1
1,1 𝜃3,2

1,1 𝜃3,3
1,1
� 

 

Θ1,1 = �
1
0 1
0 0 1

� 

 

Level 1: 𝜈𝜈 
𝜈𝜈1 = �

𝜈𝜈11

𝜈𝜈21

𝜈𝜈31
� 𝜈𝜈1 = �

1
1
1
� 

 
Level 1:  Λ 

Λ1,1 = �
𝜆1,1
1,1

𝜆2,1
1,1

𝜆3,1
1,1
� Λ1,1 = �

0
1
1
� 

Level 1: Ψ Ψ2,2 = �𝜓1,1
2,2� Ψ2,2 = [1] 

Level 2 → Level 1: Β Β1,2 = �𝛽1,1
1,2� Β1,2 = [0]. 

Level 2: Ψ Ψ2,2 = �𝜓1,1
2,2� Ψ2,2 = [1] 

Level 3: Θ 

Θ3,3 = �
𝜃1,1
3,3

𝜃2,1
3,3 𝜃2,2

3,3

𝜃3,1
3,3 𝜃3,2

3,3 𝜃3,3
3,3
� 

 

Θ3,3 = �
1
0 1
0 0 1

� 

 

Level 3: 𝜈𝜈 
𝜈𝜈3 = �

𝜈𝜈13

𝜈𝜈23

𝜈𝜈33
� 𝜈𝜈3 = �

1
1
1
� 

 
Level 3 → Level 2: Β Β2,3 = �𝛽1,1

2,3� Β2,3 = [0] 
Level 3:  Λ 

Λ3,3 = �
𝜆1,1
3,3

𝜆2,1
3,3

𝜆3,1
3,3
� Λ3,3 = �

0
1
1
� 

Level 3: Β 
Β3,3 = �

𝛽1,1
3,3

𝛽2,1
3,3 𝛽2,2

3,3� 
Β3,3 = �0

1 0
� 

Level 3: Ψ 
Ψ3,3 = �

𝜓1,1
3,3

𝜓2,1
3,3 𝜓2,2

3,3� 
Ψ3,3 = �1

0 1
� 

8.2.4 PATH DIAGRAM 
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teacher

student

1

y1 y2

hcfa

y3

1

1

q1 q2 q3

1

school

2
1η

3
1η

3
2η

1
1η

2,2
1,1ψ

3,3
1,1ψ 3,3

2,2ψ

1,1
1,1ψ

1,1
1,1θ

1,1
2,2θ

1,1
3,3θ

1,1
2,1λ

1,1
3,1λ

3,3
2,2λ

3,3
3,2λ

3,3
1,2β

3,3
1,1θ

3,3
2,2θ

3,3
3,3θ

 

8.3 CODE LISTING 

This model cannot be estimated using currently available SEM software.   

8.3.1 XXM 

library(xxm) 

data(hcfa.xxm) 

 

#Student: factor-loading matrix  

ly1_pat <- matrix(c(0,1,1),3,1) 

ly1_val <- matrix(c(1,1.1,.9),3,1)  

ly1_lab <- matrix(c("ly1","ly2","ly3"),3,1)  

#Student: factor-covariance matrix  

ps1_pat <- matrix(1,1,1) 

ps1_val <- matrix(.498,1,1) 

#Student: observed residual-covariance matrix    

th1_pat <- diag(1,3) 

th1_val <- diag(c(2.727,2.990,2.854),3) 
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#Student: "grand-means" NU  

nu1_pat <- matrix(1,3,1) 

nu1_val <- matrix(c(.526,.571,.592),3,1) 

#Teacher model matrices  

#Teacher: factor-covariance matrix 

ps2_pat <- matrix(1,1,1) 

ps2_val <- matrix(.1333 ,1,1) 

# School model matrices  

#School: factor-loading matrix  

ly3_pat <- matrix(c(0,0,0, 0,1,1),3,2) 

ly3_val <- matrix(c(0,0,0, 1,.9,1.1),3,2) 

#School: factor-covariance matrix 

ps3_pat <- matrix(c(1,0,0,1),2,2) 

ps3_val <- matrix(c(.1335,0,0,.1402),2,2) 

#School: observed residual-covariance matrix    

th3_pat <- diag(1,3) 

th3_val <- diag(c(1.787,1.937,2.418),3) 

#School: "grand-means/intercepts" NU 

nu3_pat <- matrix(1,3,1) 

nu3_val <- matrix(c(.129,.144,.081),3,1) 

#School: "Latent Factor Regression" Beta 

be3_pat <- matrix(c(0,0,1,0),2,2) 

be3_val <- matrix(c(0,0,.3,0),2,2) 

#Teacher -> Student matrices  

be12_pat <- matrix(0,1,1)  

be12_val <- matrix(1,1,1) 

#School - > teacher matrices  

be13_pat <- matrix(0,1,2)  
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be13_val <- matrix(c(1,0),1,2)  

 

 

hcfa <- xxmModel(levels = c("student", "teacher", "school")) 

hcfa <- xxmSubmodel(model = hcfa, level = "student", parents = 
c("teacher"), ys = c("y1","y2","y3"), xs = ,etas = c("Eta_y_Stu"), 
data = hcfa.student) 

hcfa <- xxmSubmodel(model = hcfa, level = "teacher", parents = 
c("school"), ys = , xs = , etas = c("Eta_y_Tea"), data = hcfa.teacher) 

hcfa <- xxmSubmodel(model = hcfa, level = "school", parents = , ys = 
c("q1", "q2", "q3"), xs = , etas = c("Eta_y_Sch", "Eta_q_Sch"), data = 
hcfa.school) 

## Student within matrices (lambda, psi, theta and nu) 

hcfa <- xxmWithinMatrix(model = hcfa, level = "student", "lambda", 
pattern = ly1_pat, value = ly1_val,) 

hcfa <- xxmWithinMatrix(model = hcfa, level = "student", "psi", 
pattern = ps1_pat, value = ps1_val,) 

hcfa <- xxmWithinMatrix(model = hcfa, level = "student", "theta", 
pattern = th1_pat, value = th1_val,) 

hcfa <- xxmWithinMatrix(model = hcfa, level = "student", "nu", pattern 
= nu1_pat, value = nu1_val,)  

## Teacher within matrices (psi) 

hcfa <- xxmWithinMatrix(model = hcfa, level = "teacher", type = "psi", 
pattern = ps2_pat, value = ps2_val,) 

## School within matrices (psi) 

hcfa <- xxmWithinMatrix(model = hcfa, level = "school", type = 
"lambda", pattern = ly3_pat, value = ly3_val,) 

hcfa <- xxmWithinMatrix(model = hcfa, level = "school", type = "psi", 
pattern = ps3_pat, value = ps3_val,) 

hcfa <- xxmWithinMatrix(model = hcfa, level = "school", type = 
"theta", pattern = th3_pat, value = th3_val,) 

hcfa <- xxmWithinMatrix(model = hcfa, level = "school", type = "nu", 
pattern = nu3_pat, value = nu3_val,)  

hcfa <- xxmWithinMatrix(model = hcfa, level = "school", type = "beta", 
pattern = be3_pat, value = be3_val,)  
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## Teacher->Student beta matrix  

hcfa <- xxmBetweenMatrix(model = hcfa, parent = "teacher", child = 
"student", type = "beta", pattern = be12_pat, value = be12_val,) 

## School-> Teacher beta matrix  

hcfa <- xxmBetweenMatrix(model = hcfa, parent = "school", child = 
"teacher", type = "beta", pattern = be13_pat, value = be13_val,) 

hcfa <- xxmRun(hcfa) 

hcfa <- xxmCI(hcfa) 

summary <- xxmSummary(hcfa) 

summary 

hcfa <- xxmFree(hcfa) 

8.4 RESULTS 

teacher

student

1

y11.664 y22.001

.555

.907

.936

hcfa

y31.896

1

.372

1

q1

.625
q2

1.039

.635

.667
.597

q3

1.521

1

.350

school
.784 

3
1η

3
2η

2
1η

1
1η

 

Mean structure is not illustrated in this diagram.  The student and school 𝜈𝜈 matrices were estimated as: 

𝜈𝜈1 = �
𝜈𝜈11

𝜈𝜈21

𝜈𝜈31
� = �

. 526

. 571

. 592
�,  𝜈𝜈3 = �

𝜈𝜈13

𝜈𝜈23

𝜈𝜈33
� = �

. 129

. 144

. 081
� 
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